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Abstract: As malware samples grow in complexity and employ advanced evasion techniques,
traditional detection methods are insufficient for accurately classifying large volumes of sophisticated
malware variants. To address this issue, image-based malware classification techniques leveraging
machine learning algorithms have been developed as a more optimal solution to this challenge.
However, accurately classifying content distribution-based features with unique pixel intensities
from grayscale images remains a challenge. This paper proposes an enhanced image-based malware
classification system using convolutional neural networks (CNNs) using ResNet-152 and vision
transformer (ViT). The two architectures are then compared to determine their classification abilities.
A total of 6137 benign files and 9861 malicious executables are converted from text files to unsigned
integers and then to images. The ViT examined unsigned integers as pixel values, while ResNet-
152 converted the pixel values into floating points for classification. The result of the experiments
demonstrates a high-performance accuracy of 99.62% with effective hyperparameters of 10-fold
cross-validation. The findings indicate that the proposed model is capable of being implemented in
dynamic and complex malware environments, achieving a practical computational efficiency of 47.2 s
for the identification and classification of new malware samples.

Keywords: malware classification; pixel intensity; gray images; neural networks; image visualization

1. Introduction

Malicious software poses a significant risk to individuals, businesses, and corporate
entities. Known collectively as malware, these applications comprise a wide range of harm-
ful programs designed to exploit human and system vulnerabilities. Malware includes
diverse types such as viruses, worms, ransomware, and spyware, each contributing to an
increasingly dynamic and complex threat environment. The prevalence and complexity of
malware attacks have risen sharply in recent years, highlighting the growing prevalence,
complexity, and severity of these cyber threats [1]. Techniques for enhancing malware
sophistication involve a range of advanced strategies aimed at evading detection, exploit-
ing system vulnerabilities, and increasing the overall impact of attacks. Among these
techniques, obfuscation methods such as polymorphism and metamorphism are commonly
employed to obscure the malicious code and hinder efforts to identify and neutralize the
threat [2,3].

There are traditional techniques designed to detect malware. However, traditional
methods heavily rely on malware signature [4] and other conditions such as system configu-
ration, user activity, environment checks, and other time-based conditions. While antivirus
tools such as virustotal are effective in detecting signature and conditional code malware,
variants with polymorphic or obfuscation attributes can easily evade detection. Hence,
the introduction of machine learning techniques. The integration of machine learning and
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artificial intelligence has significantly improved decision-making processes and strength-
ened security measures, such as fraud detection, threat identification, and other anomaly
detections, including malware. Machine learning algorithms detect more sophisticated
malware variants [5].

However, hackers are also leveraging machine learning techniques to their advantage,
enhancing the capabilities of malicious software to bypass detection mechanisms and
evade security detections and controls [6–10]. Also, many of the existing machine learning
techniques are faced with diverse challenges when classifying malware based on images,
such as the loss of critical structural and behavioral information when converting binaries
into images [11]. This challenge can cause malware data and visual misrepresentation,
which can lead to decreased accuracy in distinguishing between different malware families
and benign software.

In image-based malware classification, visual representations of malware patterns
are used to identify malicious software. However, when malware authors manipulate
the binary values within the malware’s converted text file, this modification alters the
corresponding image representation without impacting the malware’s functionality. Such
changes can deceive existing image-based classifiers, leading to the erroneous classification
of the malware as benign [12,13].

Several researchers have enhanced detection accuracy by addressing the issue of
class imbalance in malware datasets through the application of techniques such as the
bat algorithm [14] and data augmentation techniques [15] to analyze large amounts of
data to identify patterns and similarities among different types of malware [16]. However,
the existing malware classification techniques have not yet addressed the challenge of
differentiating between floating-point numbers and pixel intensity within flat regions of
images [17,18]. Inaccurate differentiation between the decimal equivalents of unsigned
integer byte values in malware binaries and floating-point numbers or pixel intensity values
can significantly impair image classification accuracy. To mitigate this issue, we propose a
Convolutional Neural Network (CNN) approach that effectively distinguishes between
benign and malicious applications by accurately differentiating floating-point numbers
from pixel intensity values in unsigned malware integers. This technique not only improves
classification performance but also provides a visual representation of the malware byte
stream. The main scientific question in this paper is as follows: How effective are image-
based malware classification techniques, specifically convolutional neural networks (CNNs)
using ResNet-152 and vision transformers (ViT), in accurately classifying malware variants
based on content distribution features extracted from grayscale images?

The main contributions of this paper are as follows:

1. We propose a novel, enhanced image-based malware classification technique that com-
bines convolutional neural networks (CNNs) with image-based processing for mal-
ware detection. By converting malware samples into grayscale images, the framework
captures intricate attributes and behaviors that are often missed by existing methods.

2. The proposed method integrates structured features with content-based features, pro-
cessed through principal component analysis (PCA) for normalization and dimension-
ality reduction. Integrating these features enhances the model’s efficiency by reducing
computational complexity while retaining essential information for accurate malware
classification. The combination of these techniques ensures the model’s scalability.

3. We present a comprehensive, step-by-step methodology for converting malware
samples from executable binaries to images. This approach includes distinguish-
ing between floating-point numbers and pixel intensity values, which is critical for
accurate malware classification.

The remainder of this paper is structured as follows: Section 2 reviews the related work.
Section 3 covers the proposed model, including data collection, feature extraction, image
representation, and feature normalization. Section 4 presents and analyzes the research
results. Finally, Section 5 concludes the paper and outlines directions for future work.
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2. Related Work

The related work considered in this study is focused on machine learning algorithms
for malware detection and classification, looking at their strengths and weaknesses based
on the results obtained in those previous studies. We also looked at previous works on
domain knowledge and information gain for malware classification. Some commonly used
machine learning algorithms for malware classification with their strengths and limitations
in this related work include decision trees, random forests, support vector machines, and
neural networks. Decision trees are simple and easy to interpret, but they may suffer
from overfitting and lack generalization ability, as discussed by Lan et al. [19]. Random
forests can handle large malware datasets and are less prone to overfitting, but they may
be computationally expensive [20]. As Kharoubi et al. state, support vector machines are
effective for binary classification tasks and can handle high-dimensional data, but they
may struggle with large datasets [21]. In studying the detection of complex virus particles,
Ito et al. [22] stated that neural networks are highly flexible and can learn complex patterns.
Still, they require a large amount of training data and may be susceptible to overfitting.

In recent years, researchers have been exploring ways to overcome the limitations of in-
dividual machine learning algorithms by combining them into ensemble models. Ensemble
models, such as gradient boosting and stacking, aim to leverage the strengths of multiple
algorithms while mitigating their weaknesses. By combining the predictions of multiple
models, ensemble methods can often achieve higher accuracy and better generalization
performance than any individual algorithm alone. A detailed survey on ensemble learning
in [23] stated that overfitting avoidance, representation, and computational advantage
of the algorithm are effective for solving class imbalance and concept drift, which occur
during feature distribution and label change. Additionally, because other models in the
ensemble can correct errors made by one model, ensemble models can offer improved
robustness and stability. Ensemble models work by training multiple individual models
and then combining their predictions to make a final prediction.

Gradient boosting is a well-liked ensemble method that sequentially trains weak
models and combines their predictions in a way that focuses on the samples that the
earlier models failed to predict well, as highlighted in [24]. This iterative process helps to
improve the overall accuracy of the ensemble model during an early stage of the malware
attack. Another commonly used ensemble method is stacking [25], which involves training
multiple models and then training a meta-model on the predictions of these models. The
meta-model learns to combine the predictions of the individual models in a way that
optimizes the final prediction. This stacking technique can further improve the overall
performance of the models. One advantage of stacking is that it can capture different
aspects of the data by using diverse base models [26]. Each base model may have its
strengths and weaknesses, and by combining their predictions, the ensemble can leverage
the strengths of each model while mitigating their weaknesses. Combining the strengths of
the models can lead to a more robust and accurate final prediction. Additionally, stacking
allows for the incorporation of various types of models, such as linear models, tree-based
models, or neural networks, which can capture different types of relationships in the data.

By combining these diverse models, the ensemble can exploit the complementary in-
formation they provide, resulting in improved performance and more accurate predictions.
Furthermore, stacking can also help reduce overfitting as it combines multiple models that
have been trained on different subsets of the data. This diversity in training data helps
to generalize the predictions and prevent the ensemble from relying too heavily on any
one model. Moreover, the process of stacking involves a meta-model that learns how to
combine the predictions of the base models effectively. This meta-model acts as a final layer
of learning, refining the predictions of the individual models and potentially uncovering
patterns or relationships that were not evident in the original data.

Neural networks’ machine learning algorithm for malware analysis is a powerful tool
in detecting and classifying malicious software. By training the neural network with a large
dataset of known malware samples, it can learn to identify patterns and characteristics that
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are common among malware, allowing it to detect and classify new, previously unseen
malware samples accurately. Using a deep neural network, Ding and Zhu [27] detected
opcode sequences and feature vectors of malware executables to determine the intensity of
the malware threat. They used a combination of static and dynamic analysis techniques
to collect the necessary data for their study. By analyzing the opcode sequences, which
represent the low-level instructions executed by a program, they were able to identify
patterns and characteristics specific to malware. Additionally, the feature vectors provided
a higher-level representation of the executable files, capturing important attributes such as
file size, entropy, and imported functions. The comprehensive approach allowed them to
accurately assess the level of threat posed by each malware sample during classification.

One approach to malware classification is to utilize domain knowledge and infor-
mation gain-based techniques in conjunction with neural networks. By incorporating
domain knowledge, such as understanding the characteristics and behaviors of different
types of malware, the classification model can make more informed decisions. Wagner
et al. [28] used an arc diagram to visualize malware samples using domain knowledge
to externalize the rules for an easy analysis process. The externalized knowledge aids in
understanding the correlation between the rule table and its details in the classification
function of the feature attributes. This research is similar to the one performed by Ostaheli
in [29], which adopted an information gain approach to classify malware. The related work
is summarized below:

3. Method

This section outlines the methodology employed in the development and imple-
mentation of the proposed framework. The proposed framework consists of six primary
methodological components: data collection, feature extraction and conversion, image
representation, normalization, image classification, and edge detection. Each of these com-
ponents is integral to the overall functionality and performance of the system. Each of the
methodological components are discussed in the subsequent sections. The proposed sys-
tem architecture integrates various feature sets, including pixel intensity, texture patterns,
grayscale, color, sequence, opcode frequencies, entropy, etc. The model incorporates both
structured and content-based malicious features to enhance its robustness and performance,
particularly for identifying sophisticated samples with encrypted or polymorphic attributes.
This approach is informed by the understanding that analyzing specific content within
malicious payloads can reveal critical functionalities, such as initiating denial-of-service
attacks or facilitating backdoor installations.

3.1. Data

The malware sample used in this paper is obtained and filtered from the MalNet
project [30]. A dataset comprising 17,094 malicious samples and 13,482 benign samples
was collected and stored on a network attached storage system with two virtual machines
(VM1 and VM2) (see Figure 1). The collected samples were subsequently refined to include
6137 benign and 9861 malicious instances, with redundant features eliminated using the
technique described by Ahmed et al. [31]. VM1 is allocated for analytical tasks, whereas
VM2 is assigned for monitoring purposes. A significant advantage of our proposed model
is its seamless integration with virtual machine nodes and SQL servers, which optimizes
log retrieval and analysis processes, thereby reducing the necessity for manual intervention
in monitoring malware escalation during our experiment.
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3.2. CNN Architecture Selection

In the context of malware classification, choosing the appropriate convolutional neural
network (CNN) architecture is crucial to balance accuracy, computational efficiency, and
generalization. In this paper, we choose ResNet-152 architecture over existing options such
as VGG, BN-Inception [32], DenseNet-201 [33], and MobileNet-v2 architecture [34] because
of its several advantages compared to other CNN architectures. Two key advantages were
considered when choosing the ResNet-152 architecture for the proposed model. First,
ResNet-152 has residual learning abilities to mitigate degradation problem [35], which
is common in other architecture such as VGG. ResNet-152 allows the proposed model
to capture intricate sample patterns without gradient vanishing which is important in
classifying large and complex malware datasets.

Second, ResNet-152 allows for the progressive extraction of both low-level and high-
level features which are crucial in detecting subtle differences in pixel intensity. Malware
can exhibit slight disparities from benign software, and the ability of a model to discern
these subtle differences through deeper images is key. Compared to VGG, which has a
fixed set of convolutional layers, ResNet’s residual connections allow the network to learn
more detailed and nuanced features. While VGG architectures have strong performance on
small- to medium-sized datasets, they lack the residual capabilities of ResNet. Inception
architectures were not a choice for the proposed model. In [36], Zhang et al. noted that
inception is less effective in capturing deep hierarchical relationships needed for complex
image malware classification tasks.

3.3. Feature Extraction and Conversation

Figure 2 illustrates the step-by-step process for converting an executable file into an
image. Initially, the executable file stored on VM1 was converted into a text file contain-
ing features such as edges, pixel arrangements, color distribution, section names, and
shape transitions.

Malware samples, when represented as images, can reveal intricate patterns based on
the distribution of byte values. The pixel intensity feature captures the brightness of each
pixel, which corresponds to the underlying byte or sequence of bytes in the malware file.
This feature is essential for identifying subtle byte-level changes or regularities that may
signify malicious behavior. Grayscale simplifies the data by reducing the dimensionality
of the color space to a single channel. Grayscale feature is chosen to enable the proposed
model focus on structural similarities and differences in the malware data without the
distraction of color variations. Other features such as edges, patterns, and section names
were chosen for the fact that malware samples may exhibit specific repeating or unique
patterns that are best captured as textures within the image representation. Edges and
section names enable the detection of spatial relationships between pixel intensities. This
enables the proposed model to identify underlying structural features that may indicate
obfuscation and compression methods used by the malware.
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This text file represents a byte stream encompassing the binary values of the executable.
In malware analysis, it is crucial to transform raw byte data into a structured format
suitable for machine learning algorithms. The byte stream was converted into its decimal
equivalents. This method facilitates the normalization of the data, allowing the proposed
model to more effectively represent sequences or frequencies of specific byte values and
thus simplify the data representation for improved analysis. Following the techniques of
Washington et al. [37], we stored the decimal equivalent into an array and converted it into
unsigned integers accordingly. The unsigned integers are then represented as floating point
numbers and pixel intensity values.

Representing malware samples as images and classifying them based on pixel intensity
values and floating-point numbers to derive rich feature sets and exploit the detailed spatial
information inherent in pixel values. This potentially uncovered color patterns that are not
apparent through conventional analysis. In scenarios where sophisticated malware alters
its code to evade detection, the proposed model analyzes and compares the floating-point
representations and pixel intensity patterns to identify and uncover underlying similarities.
The unsigned integers are then converted into a PNG image file. PNG image was chosen to
avoid the limitation associated with GIF, which has only a 256-color palette.

The preprocessing strategy adopted in this paper addressed two key challenges. First
raw byte streams from executable files are complex, unstructured, and not directly suitable
for machine learning algorithms, as they do not inherently convey meaningful patterns or
structures for analysis. The conversion of raw byte data into decimal equivalents facilitates
structuring the data in a more accessible and interpretable format for the proposed model.
Secondly, binary and byte-level representations can be overwhelming and may not reveal
clear patterns that can be easily analyzed in machine learning models. Transforming the
data into floating-point numbers and pixel intensity values creates a simplified representa-
tion, which aids in deriving rich feature sets and detecting hidden patterns more effectively.
This also addressed the challenge of malware evasion. This analyzes subtle pixel inten-
sity patterns and floating-point representations to uncover underlying similarities that
traditional methods may miss.
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3.4. Image Representation

This subsection provides a brief overview of the various methods for representing mal-
ware samples. These methods include graphical views, image views, high-level language
representations, assembly code representations, network traffic analyses, and hexadecimal
views. Each method offers a unique perspective on the malware, facilitating diverse ap-
proaches to analysis and detection [38]. The graphical view represents malware behavior
or code flow using graphical diagrams such as state machines, call graphs, or flowcharts.

The state machine represents malware by describing its behavior in terms of a finite
number of states, transitions between those states, and the actions associated with the
transitions. When representing malware using state machines, each state represents a
specific behavior of the malware, and transition represents how the malware moves from
one state to another based on certain conditions or events. For example, as shown in
Figure 3, the idle state S0 is when a user downloads a file or application from a source
with a suspicious extension such as .exe, .bat, etc. S1 is when the threat actor spoofs the
suspicious extensions for the malware to be injected into the target system when certain
conditions are achieved. S2 and S3 represent the payload delivery and spreading state
where the target system enables file encryptions and modifications during the infection
state S4. S5 is the dynamic operation that involves transforming the contents of a vast array
of user files modified in S4 into encrypted data. Our approach uses an image representation
approach. To represent malware as an image using structured and content-based features,
we convert the malware sample into a raw binary stream and memory dump separately.
Both features are then converted into an image by encoding it into pixel values of images.
Malware, like any other digital data, is typically stored in binary format [39], consisting
of a sequence of 0 s and 1 s. This sequence is represented by binary encoding for easy
manipulation and processing into any form, such as digital images.
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In this paper, malware is represented as a digital image. Each pixel represents a single
point in the image and is assigned a specific value that determines its color and intensity
based on the feature attribute. To represent malware as an image, we divide the binary
data of the collected malware sample into bytes. Each byte is mapped to a corresponding
pixel value in the image by converting the binary values to grayscale intensity values, as
shown in Figure 4.
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Figure 4. Rendering of malware sample image. (a) Pictures integrated in the malware sample and
(b) Images of malware that share similarities across various malware categories.

3.5. Feature Normalization

A combination of structured and content-based features was extracted from the col-
lected dataset, as discussed in the previous sections. Figure 5 shows a logical flow of the
image magnitude as input into the model. Features with high dimensions were reduced
using principal component analysis as follows:

PCa =c1X1 + c2X2 + · · ·+ cdXd (1)

where PC is the principal component (a), which is the dependent variable; Xd are original
independent features represented as Xj; and c1, c2. . ., cd are coefficients determining the
impact of each independent variable. We normalized the features for effective model
performance using the min–max normalization equation to scale the values of each variable
X1, X2, . . ., Xd to a range between 0 and 1 as follows:

NormalizedXi =
Xi − Minxi

MaxXi − MinXi

(2)

Normalized_PCa = Normalized_c1 × Normalized_X1 + Normalized_c2×
Normalized_X2 + . . . + Normalized_cd × Normalized_Xd

(3)
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Equation (2) scales the values of Xi to the range [0, 1] and transforms the values of
Xi, which represent features, into a standardized range between 0 and 1. This scaling
process is often employed in machine learning to bring all values into a comparable range.
Equation (3), on the other hand, normalizes the coefficients associated with these features.
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Using the stochastic method, we convert the normalized binary features into image byte
streams as follows:

Di =i ∈ {µ, ν . . . , Ψ − 1} (4)

where Ψ represents the binary length of malware, Di refers to the ith byte in a sequence,
and µ and ν are the range values starting from µ and ending at Ψ − 1, Di ∈ {0, 1. . ., Ψ − 1}.
To form a single binary stream for malware image, we concatenate all the Di sequences
together as follows:

S =DµDν . . . DΨ−1 (5)

S = f
(

DµDν . . . DΨ−1
)

(6)

where S is the concatenated stream, f represents the function that combines all the individ-
ual binary sequences Di into the final binary stream S. f depends on how the sequences are
to be combined. In this paper, we use simple concatenation instead of logical operations
presented in Equation (6), which provides a general framework for representing the binary
stream based on the sequences of the binary byte from the collected dataset used in this
paper. To obtain an image representation that can be fed into our model, we convert the
byte stream executable into a grayscale image where each pixel of the grayscale represents
a feature value. We organize feature values and assign unique intensities for image pattern
similarities. To process the concatenated byte streamS into an image magnitude for the
model, we use the edge detection equation as follows:

ED = EdgeDet(S) (7)

ED = EdgeDet
(

f
(

DµDν . . . DΨ−1
))

(8)

ED = EdgeDet

(
f

(
Dµ − min

(
Dµ

)
max

(
Dµ

)
− min

(
Dµ

) ,
Dv − min(Dv)

max(Dv)− min(Dv)
, . . . ,

DΨ−1 − min(DΨ−1)

max(DΨ−1)− min(DΨ−1)

))
(9)

Equation (7) illustrates a direct application of edge detection to the byte stream S. Equation (8)
presents a more refined methodology, where S is first transformed into a set of feature
vectors before edge detection is applied. This method forms the core of our machine
learning pipeline, which aims to accentuate specific features or structures within the image
by detecting edges after processing the raw data. By focusing on structural properties,
our approach enhances the capability of the machine learning pipeline to classify patterns
within the image more effectively than existing models. As illustrated in Figure 5, we
utilize a convolutional neural network (CNN) to learn from the labeled dataset and develop
a predictive model. During the training phase, the data are partitioned into training
and validation subsets to facilitate both the model’s learning process and the assessment
of its performance. This process involves the iterative tuning of hyperparameters to
optimize accuracy and generalization, with entropy loss serving as the criterion for training
the network.

The architecture of the convolutional neural network (CNN) implemented in this
paper comprises several key layers. The model begins with an input layer designed to
accept grayscale images of malware binaries. Following this, the images are processed
through three hidden layers, each equipped with 128 filters of size 5 × 5 and a stride of
1 to allow each filter to traverse the input image one pixel at a time. To mitigate the risk
of overfitting and reduce dimensionality, a 2 × 2 pooling window is applied, facilitating
the extraction of dominant features from the input data. To further combat overfitting,
a dropout rate of 0.3 is integrated into the architecture. The final layer consists of two
neurons using SoftMax activation function to enable the model to output probabilities for
binary classification.
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4. Results and Discussion

This section presents the results, including a comprehensive analysis of the model’s
performance and evaluation metrics. In this paper, different visualization tools are used to
interpret how different layers of our model processed and classified the image input.

4.1. Image Classification

To evaluate the robustness and accuracy of our method, we applied a 10-fold cross-
validation to the entire dataset. The classification process was based on features extracted
from the image magnitude formats, as discussed in the previous section. Upon importing
the image magnitude for training, only a grayscale representation was generated (see
Figure 6). We then trained the model with the imported sample and performed 10 iterations
at each fold. At 0 iteration, our CNN model processed feature maps as a holistic repre-
sentation of the malware samples, identifying both benign and malicious characteristics
within each sample. However, this iteration lacked the necessary visualization clarity to
distinguish between benign and malicious attribute data points in the image magnitude.
To address this, we increased the iteration count at intervals of 2000 counts (see Figure 7)
while maintaining the Kruskal stress level at 0.5. This approach was aimed at enhancing
the model’s capability to differentiate between benign and malicious features within the
malware dataset.
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The consistent Kruskal stress level of 0.5 indicates that the edge detection technique
employed in the model’s multi-dimensional scaling was meticulously controlled, ensuring
both the quality and interpretability of feature mapping in these subsequent iterations. This
balance allowed our model to improve classification accuracy while avoiding overfitting
and preserving the interpretability of the feature space.

The 10,000th and 14,000th iterations clustered similar features within the sample space
across all concatenated image streams. At the 18,000th iteration, the features were distinctly
classified by our model (see Figure 7a–i). Using multi-dimensional scaling [40], we were
able to visualize the data and identify patterns and relationships between different malware
samples at every iteration.

4.2. Edge Detection

Self-organizing map (SOM) is an unsupervised neural network model that reduces
dimensionality by mapping high-dimensional data into a lower-dimensional grid, typically
2D, while preserving the topological properties of the input space [41]. We applied the
SOM technique to the flattened feature space obtained from CNNs after max-pooling.
Flattening here refers to converting the multi-dimensional output of CNN layers into a one-
dimensional vector [42]. By reducing dimensionality using SOM, our model was enabled
to focus on the most salient features that are most indicative of whether a byte stream is
malicious or benign. We set SOM initially to automatically determine its dimensions, which
would influence the granularity of clustering. However, this approach did not lead to the
successful classification of the byte streams, suggesting that the automatically determined
grid size may not have been optimal, possibly because it either over-clustered or under-
clustered the data. This resulted in non-separability between malicious and benign byte
streams (see Figure 8a). From Equation (3), we used PCA to reinitialize the SOM with
specific dimensions (8 × 8 grid) to balance the resolution of micro-cluster (see Figure 8b).

A sieve diagram in the context of convolutional neural networks (CNNs) is a visual-
ization tool used to understand and interpret how a CNN processes an image, particularly
how different layers of the network filter or “sieve” the input data [43]. Each layer of
our CNNs model applies a set of filters to the input image, and different patterns are
classified based on their edges, as stated in Equations (7)–(9). After the filters are applied,
the resulting feature maps represent the areas of the image that activated or responded
to these filters. The sieve diagram then visualized how these feature maps evolve as data
pass through each layer of the model network. In the first layer, filters detected the edges
(Figure 9a) by identifying the structural features from the malware images and then classi-
fied edges (Figure 9b) by segmenting the images into regions. Figure 10 shows the principal
component analysis evolution to reduce the computational cost of the model.
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This component captured the most dominant features of the input data, such as the
edge patterns of the overall texture in image input. The second component captures 99.2%
of the variance. This exceptionally high value demonstrates that almost all remaining
variability in the dataset after accounting for the first component is captured. This compo-
nent might be focusing on slightly different, yet still crucial, aspects of the malware data
that were not fully captured by the first component. The principal component indicates
the proportion of the dataset’s total variance captured by the components. The result
indicates how much of the data’s information was preserved when projecting onto those
components. The first principal component captures 74.2% of the total variance in the data.
Suggesting that a substantial portion of the malware dataset’s variability is explained by
this component, which is interpreted as the most significant direction in the data. With
over 70% of variance, it suggests that the proposed model can already make reasonably
good distinctions between the benign and malicious samples based on this component
alone. This indicates that the proposed model can capture the distinguishing characteristics
between benign and malicious samples. This likely allows for good classification perfor-
mance in terms of accuracy, as most of the variance is captured in the first few components.
The third component captures 95.3% of the variance.

This indicates that even the third principal component is highly significant, capturing
most of the remaining variance after the first two components. This might correspond to
subtler features in the data, potentially finer patterns or textures in images that further
enhance the model’s ability to distinguish between classes. The fourth component has an
explained variance of 99.6%, which is very high. To summarize, 95.3% and 99.6% of the
variance indicates that the proposed model is able to represent samples’ complexity even
with dimensionality reduction and still retains the dataset’s important characteristics to
allow the model to efficiently differentiate between benign and malicious samples.

This suggests that even in the fourth dimension, the dataset retains significant variance,
possibly due to complex, multi-faceted features that require multiple components to be
fully represented. High explained variance in PCA indicates that our proposed model
performs well because the principal components retain most of the essential information
in the data. The PCA results show that the principal components of the model capture a
significant amount of variance. This illustrates that the dimensionality reduction techniques
used in our model are effective.

4.3. Information Gain

Figure 11 shows typical network features embedded in the image. Malware behaviors
such as data theft, keylogging, and various types of DoS attacks manifest differently in
their binary representations. Many existing models find it challenging to translate these
behaviors into visual patterns that a model can effectively differentiate. Without accurate
differentiation, it is difficult to highlight which image regions or corresponding feature
maps are most indicative of these behaviors due to overlapping features. Different types
of malware might share similar features, especially in their visual representations. For
instance, both TCPDoS and HTTP DoS attacks may have overlapping patterns. Information
gain helps in distinguishing these by focusing on subtle differences, but the overlapping
nature of these features could also reduce the effectiveness of traditional information gain
measures. The visualization of some malware samples as classified by our model is shown
in Figure 12. Malware type is consistently highlighted in the heatmap; it indicates that
this region contains features that are highly informative for our model to classify as either
malicious or benign.
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Figure 12. Visualized malware images based on their malware families. (a) QakBot, (b) Gamarue,
(c) Sodinokibi, and (d) Ryuk.

To maintain the effectiveness of our model, we used confidence scores of the heatmap
to determine the likelihood that a given image belongs to a particular malware category
by highlighting areas of interest and corresponding to the parts of the image that the
network considers important for distinguishing between different types of malware. For
example, if a certain region of the image corresponds to a particular. The experimental
results indicate that the proposed method achieved a higher accuracy of 99.62%, surpassing
current state-of-the-art methods (see Table 1).

Table 1. Comparison between the proposed model and current state-of-the-art methods.

Year and Reference Architecture Accuracy (%)

2021 [44] Spatial Attention CNN with VGG16 97.42
2021 [11] CapsNet 96.58
2021 [45] SSPNet1 96.86
2022 [46] CCN 99.00
2022 [47] CNN + VGG16 98.92
2022 [48] CNN 99.60
2023 [49] Transfer learning 99.60
2023 [50] Deep Learning (DL) + (CNN) 97.00
2023 [51] Visualization and Deep learning 99.44
2024 [52] Generative Adversarial Network 99.50

Our model CNN 99.62
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The analyses of the proposed method relative to the existing approaches in this paper
reveal not just the accuracy figures but also how different architectures behave under
various data scenarios and against different malware types. Looking at the accuracy trend,
from 2021 to 2024, there is a general improvement in accuracy, with most models achieving
>97%. Our proposed model slightly outperforms the top accuracy of 99.60% [48,49] with
a score of 99.62%. Models based on architectures like CapsNet [11] and SSPNet1 [45]
demonstrate slightly lower performance (~96.5%), which could be indicative of how those
architectures handle data complexities or malware variations. In terms of architecture,
GANs [52] and Transfer Learning [49] may perform better in this scenario. GANs can
generate synthetic data to augment the dataset, and transfer learning can leverage pre-
trained models to mitigate the effects of a small dataset. CapsNet [11] may struggle with
diverse data due to its sensitivity to complex relationships, whereas Visualization + Deep
Learning [51] may excel since it can highlight distinguishing features through visualization.
Our model achieves the highest accuracy (99.62%) among the methods in the table, which
is attributed to optimized CNN layers and potentially better hyperparameters and training
strategies. GANs [52] and Transfer Learning [49] may perform better in limited data
scenarios. GANs can generate synthetic data to augment the dataset, and transfer learning
can leverage pre-trained models to mitigate the effects of a small dataset.

The trend in accuracy improvements over time reflects the continuous advancements
in machine learning models for classifying malware. Early models, such as the Spatial
Attention CNN with VGG16 from 2021, achieved 97.42%, which was a significant result at
the time. Over the years, newer models such as CNN (2022) and Transfer Learning (2023)
show even higher accuracies of around 99.62%. This trend demonstrates how deep learning
techniques have evolved with more sophisticated architectures, optimization techniques,
and data handling. Many of the models compared in this paper have accuracy percentages
very close to one another, especially in recent years (2022–2024). For example, CCN (99.00%),
CNN + VGG16 (98.92%), and Generative Adversarial Network (99.50%) all hover around
the upper 90s. The proximity in performance suggests that the models are converging
towards a performance ceiling, where improvements are becoming more incremental rather
than substantial. Our model’s performance at 99.64% accuracy is certainly competitive and
slightly better than previous models in the dataset.

5. Conclusions and Future Work

In this paper, we introduced an enhanced image-based malware classification model
that integrates both structured and content-based features, normalized using advanced
dimensionality reduction techniques such as principal component analysis (PCA) and edge
detection algorithms. By converting malware binaries into grayscale images, the model
leverages the unique patterns and structures inherent in these images to improve malware
detection accuracy. Employing a convolutional neural network (CNN), the proposed
method achieved an impressive classification accuracy of 99.62%, outperforming several
state-of-the-art models. The robustness and reliability of the model were demonstrated
through a comprehensive evaluation, including 10-fold cross-validation and comparisons
with existing techniques.

The results show that the proposed model not only exceeds existing models in accu-
racy but also exhibits enhanced resilience to variations in data. The findings of this study
hold significant implications for the field of malware detection and classification. The
proposed model demonstrates the efficacy of leveraging image-based representations of
malware binaries in conjunction with advanced machine learning techniques. By trans-
forming malware binaries into grayscale images, the model captures distinctive structural
patterns that are often overlooked by traditional binary-based approaches. The use of PCA
and edge detection for dimensionality reduction and feature extraction played a critical
role in enhancing the model’s performance by reducing computational complexity while
improving the discriminative power of the features provided to CNN. The robustness
of the proposed model, validated through rigorous 10-fold cross-validation, underscores
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its reliability across diverse datasets and conditions. This highlights its suitability for
real-world applications, particularly in environments where malware data variability and
noise are prevalent.

Despite the promising results achieved in this study, some limitations are observed.
The first limitation is that although the proposed system exhibits high accuracy and compu-
tational efficiency, the dataset used consists of only 16,000 samples. This relatively limited
sample size may affect the generalizability of the model, particularly when applied to
larger and more heterogeneous datasets. The last limitation of the comparison between
ResNet-152 and the vision transformer (ViT) architectures is based on a specific set of
hyperparameters, which may not be universally optimal, especially in IoT environment,
thereby limiting the model’s adaptability to varying conditions and datasets. Future re-
search will focus on adapting the proposed model to address specific challenges in IoT
malware, including developing lightweight versions that can operate efficiently under the
resource constraints of IoT devices.
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