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Face recognition from images or video footage requires a certain level of recorded image quality. This paper 
derives acceptable bitrates (relating to levels of compression and consequently quality) of footage with 
human faces, using an industry implementation of the standard H.264/MPEG-4 AVC and the Closed-
Circuit Television (CCTV) recording systems on London buses. The London buses application is utilized as 
a case study for setting up a methodology and implementing suitable data analysis for face recognition from 
recorded footage, which has been degraded by compression. The majority of CCTV recorders on buses use 
a proprietary format based on the H.264/MPEG-4 AVC video coding standard, exploiting both spatial and 
temporal redundancy. Low bitrates are favored in the CCTV industry for saving storage and transmission 
bandwidth, but they compromise the image usefulness of the recorded imagery. In this context, usefulness is 
determined by the presence of enough facial information remaining in the compressed image to allow a 
specialist to identify a person. The investigation includes four steps: 1) Development of a video dataset 
representative of typical CCTV bus scenarios. 2) Selection and grouping of video scenes based on local 
(facial) and global (entire scene) content properties. 3) Psychophysical investigations to identify the key 
scenes, which are most affected by compression, using an industry implementation of H.264/MPEG-4 AVC. 
4) Testing of CCTV recording systems on buses with the key scenes and further psychophysical 
investigations. The results showed a dependency upon scene content properties. Very dark scenes and 
scenes with high levels of spatial-temporal busyness were the most challenging to compress, requiring 
higher bitrates to maintain useful information.  
 
Index Terms—CCTV recording systems, human face recognition, H.264/MPEG-4 AVC, image usefulness, 
visual psychophysics, scene characterization.   
 
1   Introduction  

 
The police use both subjective and objective methods for the completion of face recognition tasks. 
Objective methods employ automated face recognition systems (FR). Subjective methods involve 
visual examinations of recorded/transmitted imagery, carried out by operatives, such as police staff and 
external specialists. Police staff carries out recognition tasks and the court decides whether, or not to 
convict, based on the evidence provided. So, Closed – Circuit Television (CCTV) imagery is used in 
UK courts as documentary evidence [1]. Furthermore, CCTV imagery has been found to have an 
effective impact on conviction of crimes [2].  
 
There are many surveillance applications where the recording of facial information is used, such as in 
trains, buses, underground, transport stations and open streets. When a person is further away from a 
camera than less facial information will be visible and other means of person recognition can be 
applied, such as gait analysis [3]. In this investigation, the London buses application was selected as a 
case study. London public buses make use of CCTV systems to prevent crime, identify 
offenders/actions and for insurance purposes [4, 5].  
 
Factors, such as illumination conditions, angle of the face with respect to the camera plane, and camera 
to subject distance influence the accuracy of face recognition tasks [6-12]. These factors affect the 
image quality of the reproduced imagery thus the reproducibility of useful facial information. 
Illumination poses an important problem in CCTV imagery, since such systems often operate under 
totally uncontrollable, or semi-controllable illumination conditions (e.g. open street CCTV cameras, 
bus CCTV systems). Useful facial information in the reproduced imagery is further compromised by 
compression, implemented to satisfy limited storage capacity of CCTV recorded systems, or 
transmission bandwidths. Low bitrates are favoured in the CCTV industry for lowering data costs.  
 
Subjective image quality for security systems has been defined as the image usefulness, or image 
suitability of the visual material to satisfy a specific task [13-15].  In this context, the specific task 
requires enough useful facial information to remain in the compressed image in order to allow a 



specialist to recognize a person from the video footage. Quality of experience (QoE) related to such 
applications goes beyond the standard quality factors [16]. Therefore, image usefulness does not have 
the exact same meaning as image fidelity [17]. For example, an image with visible compression 
artefacts is considered distorted, but if the artefacts do not hide, or alter any facial information the 
image maintains its usefulness. A parallel of this concept is fingerprint identification. It has been 
shown that visible compression artefacts do not decrease the usefulness of the compressed fingerprint 
image compared to uncompressed original, as long as the artefacts have not affected important 
fingerprint ridges that are used in recognition [18]. The main users of security footage (police staff) are 
those who examine in detail the relevant information within the footage. So, image usefulness for 
CCTV footage is based on the visibility of information that could lead to recognition (facial, garments, 
gait).    
 
Lossy compression is used in the security industry to enable efficient storage and video transmission 
[19-24].  Lossy compression is a distorting process that can eventually have an effect on the visible 
information in video [25, 26] and thus the usefulness of a facial image which is used in a recognition 
task. The performance of lossy compression is influenced by a) the content of the scene [27-31] and b) 
the compression algorithm, its properties and settings [29, 31, 32]. Scenes with different motion 
properties (temporal differences), regions (spatial differences) and combinations of different spatial-
temporal properties will require different acceptable bitrates, leading to different levels of compression. 
Figure 1, provides an example of the H.264/MPEG-4 AVC lossy encoder performance under different 
illumination conditions. 

 

 
Fig. 1. As the bitrate decreases the useful information decreases. Defining acceptable compression ratios depends on the original 
image and observers’ acceptability standards. For instance, the bright (at the bottom) and dark (at the top) scenes are more 
susceptible to compression. They require lighter compression to achieve “acceptable” responses from observers, in comparison 
to the well-illuminated scene (in the middle). 

The majority of the CCTV recorders on London buses use a proprietary format based on the 
H.264/MPEG-4 AVC encoder. The latter is a hybrid video encoder, exploiting both spatial and 
temporal redundancy and uses a 4×4 integer adaptive transform, which is an approximation of the 4×4 
DCT. H.264/MPEG-4 AVC produces blocking artefacts that become more visible at low bitrates [33, 
34]. The ITU-T and ISO/IEC JTC 1 video standards, such as H.264/MPEG-4 AVC, specify only the 
decoding part in order to ensure interoperability and syntax capability between different technologies 
implementing the standard. Image quality is not specified in the standards. As a result, these different 
implementations of the same encoder will produce different compressed qualities.  
 
Image usefulness, is under the category of visuo-cognitive attributes of image quality and is only 
evaluated using subjective investigations and psychophysics [32, 35]. These types of investigations are 
complicated and require detailed planning, because multiple variables can affect the observer’s 
impression and the QoE [36]. The ITU provides guidance in relation to assessments of video based 
imagery [37]. When image fidelity (i.e. the visibility of image distortion from reference imagery) is 
assessed, the ITU recommends that the reference video is provided and runs simultaneously on a single 
monitor, along with the reduced quality version. This arrangement helps the observers to make a direct 
judgment of what they see, and does not rely on memory. A similar methodology to the fidelity 
assessment is used for the assessment of image usefulness in the present investigation.  
 



The main resource of information on the subject of image quality for CCTV systems comes from the 
extensive work of Klima and his co-authors. Although, Klima et al [27, 28, 38] have tested many 
different compression techniques using subjective testing, they have not used an extensive set of 
scenes, and have not included different scene properties (e.g. difference in illumination or distances of 
the subject to the camera). Their work is related mainly to a few close up faces and number plates. 
Additionally, they concluded that the subjective results were not dependent just on compression rate, 
but on the initial information content of the scene and its purpose [28]. For this reason, in the present 
investigation a more extensive set of scenes, with different properties, is employed. 
 
In this work we propose a reproducible methodology and tools to derive acceptable bitrates of scenes 
with human faces using an industry standard implementation of H.264/MPEG-4 AVC, and the CCTV 
recording systems on London buses. Scenes of 20-second duration were grouped based on the 
following inherent properties: scene brightness, camera to subject distance, angle of the face to the 
camera plane and level of busyness (based on spatial and temporal information). The majority of the 
CCTV recorders on London buses use proprietary formats based on the H.264/MPEG-4 AVC video 
coding standard [4, 39]. Two psychophysical investigations were conducted with the help of experts 
from the Metropolitan Police Service (MPS) and bus analysts. The first was used to identify the key 
scenes (i.e. scenes affected most by compression), from an initial selected set of 25 scenes, using an 
implementation of H.264/MPEG-4 AVC. The second was used to identify acceptable bitrates of the 
pre-selected key scenes (resulted in a set of 6 scenes), using five of the most commonly used CCTV 
recording systems on London buses. The former psychophysical investigation acted as a filter in order 
to reduce the viewing experimental time in the latter psychophysical investigation. In both 
investigations, the expert observers had to answer with a yes or no to the question “Is the compressed 
version of the scene as useful as the reference original in terms of facial information?”.  
 
Findings are aimed to contribute in optimizing the conditions around facial identification tasks 
undertaken by specialists, by tuning the compression to a just acceptable level. The developed video 
bus dataset can be obtained from the Home Office Centre for Applied Science and Technology in UK 
[40], to assist those wishing to investigate solutions in relation to the bus video recordings (e.g. 
automated detection of actions, such as pick pocketing). Scene content characterization allows the use 
of the video dataset to be valid for other CCTV applications. Furthermore, such characterization 
provides identification of scene properties with which systems (in this case compression algorithms) 
have been assessed and thus their influence on the systems’ performance. For example, low brightness 
scenes are more affected by compression than medium brightness scenes, and this is valid not solely 
for CCTV but for any human face recognition application. 
 
This paper is an extension of our initial investigation on the subject [26]. It contains further work on 
scene grouping, expanded analysis of results and, further recommendations and conclusions. More 
specifically, it includes an expanded introductory section, combining information from five different 
subject areas (i.e. human face recognition, police tasks/procedures, compression, image/video quality, 
and visual psychophysics). Further work has been put in the characterization and grouping of video 
scenes, which was based on the quantification and grouping of individual scene properties. The results 
are analyzed using a systematic approach that resulted to new findings. Finally a comparison is made 
between the results from the industry standard coding H.264//MPEG-4 AVC and from the CCTV 
recording systems.  
 
The rest of the paper is organized as follows: Section 2 contains the description of the experimental 
methodology. Data analysis of the results and discussion, of the two psychophysical investigations, is 
described in Sections 3, 4 and 5. In Section 6 conclusions are drawn along with suggestions for future 
work. 
 
2 Methodology  
 
Four main steps were carried out in order to derive the acceptable bitrates: 1) Development of a 
representative video dataset, 2) Selection, characterization and grouping of video scenes. 3) 
Identification of key scenes using an industry standard implementation of H.264/MPEG-4 AVC. 4) 
Testing of five CCTV recording systems using the identified key scenes. 



 
2.1 Development of a representative video dataset  
 
A sunny day presents challenges in terms of illumination for recording activities on buses. When the 
sun illuminates the one side of the bus, some areas in a scene are over-exposed, while others under-
exposed. As the bus moves, the windows allow illumination from different directions, causing the areas 
of over- and under- exposure to vary rapidly. On the contrary, an overcast day will produce diffuse 
light and uniform illumination, which is not challenging enough for testing compression. When it is 
dark, bus illumination will dominate the scenes and will therefore produce a predictable and uniform 
illumination. The following conditions were used during data collection (footage recording). 
 

 Camera system. A consumer quality mini digital video (DV) camcorder was used for the 
filming of all scenes. An automated exposure setting was chosen to replicate what happens 
with CCTV camera capture. Ten camcorders were set up according to Transport for London 
(TfL) recommendations, i.e. the camera views.  

 Illumination conditions. Sunny day (during day time) and bus illumination together with some 
exterior illumination e.g. from shops (during night time).  

 Participants. Twenty-six actors from various ethnicities, ages and gender acted as the bus 
passengers, according to given scenarios.  

 
The DV camcorder was chosen for the recording of the bus dataset over a CCTV camera for various 
reasons, including accessibility, quality and cost. For example, expensive, specialised equipment is 
required in order to record the output of a CCTV camera in an uncompressed format. Also, there are 
numerous companies that provide CCTV systems to London buses, these have large variations in 
quality, which have not been studied and quantified. Figure 2 provides a comparison of the Spatial 
Frequency Response (SFR) [41], of a typical sample CCTV camera used on buses with that of the DV 
camcorder used for the collection of the dataset.  
 
The DV camcorder SFR indicates image sharpening in the vertical camera orientation, in the low and 
mid frequencies. Further, the camcorder has a much greater optical resolution (i.e. the SFR falls to 0.1 
at nearly 4 pixel-1) and produces sharper images (i.e. 0.5 SFR corresponds to approximately 2.7 pixel-1) 
than the CCTV (i.e. optical resolution limit at less than 3 pixel-1 and 0.5 SFR at less than 2 pixel-1).  
 

 
Fig. 2 Horizontal (H) and Vertical (V) Spatial Frequency Responses of a CCTV camera and a DV camcorder. 

The consumer DV camcorder is shown to have produced overall higher quality output than the CCTV 
system. One option to compensate for this difference is to apply a frequency filter, aiming to visually 
match the frequency response of the DV recorder to that of the CCTV camera [42]. In this case, this 
option was omitted, since the current rapid development of CCTV system technology will result in 
CCTV systems producing comparable image quality to that of consumer video systems. The focus of 
the work was put on setting up an experimental paradigm and implementing a suitable analysis of 
results.  
 



The footage dataset was recorded in a DV format, at 25 megabits per second (Mbits/s), 4:2:0 chroma 
subsampling, at full D1 PAL resolution (720 × 576) and with interlaced scanning at 25 frames per 
second (fps).  
 
2.2 Selection, Characterization and Grouping of Video Scenes 

In this investigation, various scenes were selected from the bus dataset and were further compressed 
using MPEG-2 coding standard at approximately 25Mbits/s (4:2:0 chroma subsampling). This 
compression has enabled the five suppliers of bus CCTV recording systems to have the key scenes on a 
DVD.  The suppliers were asked to play out (with a DVD player) the key scenes into their recording 
system according to a pre-defined number of bitrates and to return their recordings for use in the 
experimental testing.  
 
The main difference between DV and MPEG-2 compression is in the temporal domain; otherwise both 
encoders are based on the DCT transform [43] (i.e. MPEG-2 exploits both spatial and temporal 
redundancies whereas DV exploits only spatial redundancy). An initial experiment was conducted to 
appreciate empirically the visible differences between the two encoders. The experiment involved 
careful observation of a number of compressed scenes, with various scene properties. No visible 
differences were observed between the compressed scenes. Figure 3 illustrates an example comparison 
using both encoders. The compression bitrates used in the CCTV industry are typically much lower 
than 25 Mbits/s. Thus, the additional compression of the reference using the MPEG-2 encoder should 
not affect the results. 
 

 
Fig. 3. Comparison of two images compressed at 700kbps, with MPEG-2 (right) and DV (left). 

Due to the miscommunication between transmission and recording, it was observed that CCTV 
recording systems sometimes recorded the two fields as one frame causing the interlace effect (see 
Figure 4). In order to avoid this effect in the compressed scenes, one of the fields (the odd line 
numbers) was removed. Thus, the selected original reference for this present investigation consists of 
25 fields per second (not 25 frames per second) and is compressed with MPEG-2. 
 
Since compression performance is dependent on scene content, the various scenes selected from the 
bus dataset were characterized and grouped based on local and global scene properties. In total, 27 
scenes were grouped, of which two were used for training the expert observers.  

 

 
Fig. 4. Illustration of the interlace effect. 



The training scenes were not included in the results. Scenes of 20 seconds duration were selected, to 
enable the temporal reduction processes of the video compression algorithms to adjust to the scene 
content. The local characterization techniques discussed below focused on only 8 fields in scenes of 20 
seconds duration. In this duration, a face that appeared in 8 fields at an approximately consistent 
subject to camera distance, angle to the camera and under constant illumination was selected. The 
following paragraphs provide information on the scene characterization techniques.   
 
1) Camera to subject distance. This local property was derived objectively, by measuring manually the 
inter-pupillary distance, in pixels. The average value among the 8 fields of the face was used to classify 
the face into a selected camera to subject distance group. The scenes were classified empirically into 
two groups:  close (44 pixels distance, +/-4.5 pixels) and far (25 pixels distance, +/- 3.5 pixels)  
 
2) Scene brightness. This local property was derived objectively from measuring skin lightness using 
the CIELAB L* metric. Scene illumination and the colour of the person’s skin affected the derived 
lightness (L) value. Lightness (L*) values ranged from 0 (no lightness – black) to 100 (maximum 
lightness– white). An average of four areas on the face was used. The areas were the forehead, the right 
cheek, the left cheek and the jaw. In case of facial hair the jaw area was not measured. The average 
value among the 8 fields of the face was used to classify the face into a selected brightness group. The 
scenes fell into 5 groups of brightness using two types of illumination (daylight and bus illumination): 
1) Medium (bus illumination): L*≈ 42 (+/- 11).  2) Medium (daylight): L* ≈ 46 (+/- 6). 3) Low 
(daylight): L* ≈ 8.5 (+/- 2.5). 4) High (daylight): L*≈ 92 (+/- 4.5).  5) Mixed (daylight): L*≈ 97 (+/- 
2.5) and L*≈ 49.5 (+/- 15.5), (i.e. approximately half of the face had L*≈ 97.5 and the other half L*≈ 
49.5). 
 
The medium skin brightness groups differ in terms of ‘type’ of illumination (i.e. bus illumination and 
daylight). It was observed that the camcorder produces noisier imagery under bus illumination at night 
than under daylight illumination. Daylight produces higher illumination levels than bus illumination. 
To compensate the exposure for decreased levels of illumination, when the bus lights are on, the 
camcorder increases the ISO settings resulting to increased noise levels. It was thus considered 
important to include bus illumination on its own in the investigation. 
 
3) Angle of face to camera plane. This local property was deduced subjectively by visual inspection. 
Two groups were derived: tilted angle and frontal angle. Figure 5 illustrates examples of face angles. 
Images that include most of both cheeks (between -20 and + 20 degrees on the horizontal axes) and the 
very top of the head is not visible (between 0 and +10 degrees on the vertical axes) are classified as 
frontal. Images that include most of both cheeks (between -20 and + 20 degrees on the horizontal axes) 
and the very top of the head is visible ((e.g. +20 degrees and above on the vertical axes) are classified 
as tilted. 

 
Fig. 5. Partial group of facial angles in degrees. 

 
4) Busyness. This global property was deduced objectively, by implementing an ITU specification [44] 
measure to derive the spatial and temporal properties of the scenes. The spatial information was 
extracted by using the standard deviation of Sobel filtered fields; the maximum value represented the 
spatial information for the scene. The temporal information was obtained by using the standard 
deviation of the field differences; the maximum value represented the temporal information for the 
scene. The grouping was made based on the measured spatial and temporal values only of the available 
25 scenes. Their middle values were chosen as the limits. For example, the middle value for the spatial 



measures is 14.58 and for the temporal is 27.16. The following four groups were created: 
1) High Spatial (> 14.58) – High Temporal (> 27.16).  2) High Spatial (> 14.58 ) – Low Temporal (< 
27.16). 3) Low Spatial ( < 14.58) – High Temporal (> 27.16). And, 4) Low Spatial (< 14.58) – Low 
Temporal (> 27.16).  

Figure 6 includes all 25 scenes used in the psychophysical investigations. Table I summarizes the 
grouping of the scenes. For example, scene 1 (S1) belongs to the following groups: medium scene 
brightness (bus illumination), close camera to subject distance, frontal angle to the camera plane and 
low spatial - low temporal busyness.  

 
Fig. 6. The 25 scenes grouped in columns based on the scene brightness property. 

TABLE I 
SUMMARY OF SCENE GROUPING  

GROUP NAME  SCENE NAME TOTALS 

CAMERA TO SUBJECT DISTANCE 
Close S1, S2, S3, S6, S7, S11, S12, S15, S16, S20, 

S21, S22 
12 

Far S4, S5, S8, S9, S10, S13, S14, S17, S18, S19, 
S23, S24, S25 

13 

SCENE BRIGHTNESS  
Medium (Bus) S1, S2, S3, S4, S5 5 
Medium (Day) S6, S7, S8, S9, S10 5 

Low (Day) S11, S12, S13, S14 4 
High (Day) S15, S16, S17, S18, S19 5 

Mixed (Day) S20, S21, S22, S23, S24, S25 6 
ANGLE OF FACE TO THE CAMERA PLANE 

Frontal S1, S2, S3, S6, S7, S9, S11, S12, S13, S16, 
S17, S23, S24 

13 

Tilted  S4, S5, S8, S10, S14, S15, S18, S19, S20, S21, 
S22, S25 

12 

SCENE BUSYNESS 
Low Spa. Low Temp. S1, S2, S3, S4, S7 5 
Low Spa. High Temp. S5, S6, S20, S21 4 
High Spa. Low Temp.  S8, S9, S15, S18, S23, S24, S25 7 
High Spa. High Temp. S10, S11, S12, S13, S14, S16, S17, S19, S22 9 

Each scene from figure 6 belongs to different groups. The totals indicate the total number of scenes in the specific group.  
 

2.3 Identification of Key Scenes  
 
The key scenes, those affected most by compression, were identified by carrying out a psychophysical 
investigation on the 25 grouped scenes. The MPEG Streamclip implementation encoder was employed 
to compress the scenes at selected target bitrates, using the video coding standard H.264/MPEG-4 
AVC. Implementation encoders such as verification models used for compliance testing (e.g. Joint 
Model (JM) and FFpmeg) are often used by the scientific community; they allow the setting of over 50 



parameters, such as quantization parameters, I, P and B frames and the target bitrate. These verification 
models, when tuned properly, tend to apply ‘high quality’ compression, whilst encoders in the 
consumer and CCTV industry apply ‘lower quality’ compression [45]. It was decided that the 
verification models were not appropriate for this work. Thus, an encoder from the consumer industry 
was selected (MPEG Streamclip) with only bitrate control (i.e. no GOP size or B frames were 
selected), which complies with the security recording systems on buses.  
 
Most of the scenes were compressed at 9 different bitrates, whilst some ‘difficult’ ones at 12 different 
bitrates, all at 25 fields per second. The ‘difficult’ ones were perceived to require less compression to 
maintain useful information than the rest of the scenes. The levels and ranges of compression were 
selected empirically, after careful visual examination, to provide enough data for the derivation of an 
accurate psychometric function [46]. The compression bitrates used were approximately the following 
in kilobits per second (kbps):  
- 9 bitrates: 300, 400, 600, 800, 1000, 1200, 1400, 1600, 1800; 
- 12 bitrates: 600, 800, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600, 2800. 
 
A similar method to the fidelity assessment was implemented for the assessment of image usefulness of 
the compressed scenes in both psychophysical investigations. The observers were presented each time 
with the reference scene and its compressed version. Both versions were presented on a mid grey 
background, at 25 fields per second, as illustrated in figure 7. Although the compression was applied 
on a 20 second scene at 25 fields per second, the observers were only presented with 8 fields, in which 
the face was placed within a grey square. The observers could see the displayed compressed version 
field by field and as many times as they wished before making their judgment. 

 

 
Fig. 7. Example of the test display used in the psychophysical investigations. The left image is the reference whereas the right 
image is the compressed version of the reference. 
 
The monitor was calibrated to a white point D65 (6500K), at a luminance of 120 cd/m2 using an sRGB 
ICC profile. Based on our current knowledge, there are no standards available on monitors used for 
CCTV viewing purposes. The experiment was conducted in dark conditions to minimize reflections 
and monitor flare. The specialist observers were asked to wear glasses, if they would normally do so in 
front of a monitor. 
 
The observers consisted of 7 Metropolitan Police Service (MPS) police officers, 10 MPS surveillance 
officers, and 10 bus analysts. Table II provides a summary of the observers’ average years of 
experience and purpose of use of security imagery. 
 

TABLE II 
OBSERVERS' BACKGROUND 

 BUS ANALYSTS MPS POLICE MPS SURVEILLANCE 

Average years of experience 
in assessing security imagery  

5 years 9 years 18 years 

Use of security imagery  To identify for security 
purposes and bus issues, 
gathering evidence for the 
police. 

To identify and provide 
evidence to court mainly for 
volume crime (e.g. antisocial 
behavior, assaults) 

To monitor activities and 
behaviors, identify and provide 
evidence to court mainly for 
major crime (e.g. murder) 

 
Instructions to the observers were given via a demonstration of a selected scene from the training set. 
The training scenes were excluded from the results. The instructions were: “The reference represents 
the maximum facial information that can be captured under the available illumination conditions and 



should be considered to have acceptable image usefulness. The aim is to find how much degradation 
(compression) from the reference is acceptable. You are required to respond with a yes or no to the 
question: Is the compressed version as useful as the reference in terms of facial information? You are 
judging only the face within the grey square, not the clothes or the surrounding area. Everything else 
that surrounds the face is irrelevant and should not influence your judgment. This experiment will help 
to identify the maximum acceptable degradation (compression) from an uncompressed reference. If 
you are paired while doing the experiment, you are allowed to discuss your thoughts with your partner, 
but your final answer should be independent of your partner’s answer. Be aware of peer pressure. If 
you get bored or tired during the experiment, please inform the experimenter”. In most cases, the 
observers were paired during the experiment. This is usual practice during police examination of 
CCTV footage. 
 
The yes/no tasks have the possession of being ‘criteria dependent’ [47]. For example, the observer 
might adopt his/her own criteria on the strength of the signal (facial information) before a yes response 
is obtained. If the criterion is loose, then a weak signal might be sufficient, whereas if a strict criterion 
is adopted then a relative strong signal might be required to obtain a positive response. The observers 
in this investigation have possibly used criteria that have been derived from their individual work 
experience. Results are presented in section 3. 
 

2.4 Testing of CCTV Systems  
 
The identified key scenes from section 2.3 were given to five suppliers of CCTV recording systems 
together with instructions on amount and ranges of compression. The key scenes were compressed at 4 
fields per second (which was the requirement by TfL) and the compressed bitrates, in kbps were: 10, 
160, 352, 544, 736, 928, 1120, 1312, 1504. The amount and ranges of compression were selected 
empirically, after careful visual examinations and observation of results obtained from the first 
psychophysical investigation. Each second consists of 25 fields. Reducing the fields from 25 to 4 per 
second has resulted, in the majority of cases, to an output from the most CCTV recorders of 1 field 
from the 8 fields with the face.  
 
In this second psychophysical experiment, the methodology detailed in section 2.3 was followed aside 
from the number of observers. The number of observers was reduced to 2 MPS police officers and 9 
bus analysts. All observers were trained on the task by participating in the first psychophysical 
investigation. The number of observers is still acceptable for fitting psychometric functions to their 
responses (see section 3.1).  
 
The observers had to judge the output of each CCTV recorder (1 field) against the reference (8 fields) 
for each key scene. The performance of the five CCTV recording systems using the key scenes is 
presented in section 4. 

3 Results from the Identification of Key Scenes  
 
The obtained data from the first psychophysical investigation were modelled by fitting psychometric 
functions (PF), as instructed in [48], for each scene. The PF describes the response of the observers’ 
sensory mechanism to the different stimulus levels (i.e. compression levels). The sigmoid logistic PF 
was fitted to the obtained psychophysical data points (i.e. proportion of yes responses) at each different 
level of compression in kbps. The logistic function is given as: 
 

           (1) 

 
The shape of the curve is established from parameters α, β, and λ. a corresponds to the absolute 
threshold (i.e it is at the point of 50% yes responses); β to the gradient of the curve; λ is the stimulus 
independent lapse rate and was fixed for most fittings at 0.01 except for scene number 24 were the 
value was fixed at 0.02 (i.e. produced a more acceptable fit to the data points). The lapse rate parameter 
determines the upper bound of the curve given by 1 – λ (see eq. 1). Observer lapses need to be taken 



into consideration as they can introduce biases to the estimated a and b parameters. The effect of lapses 
can be minimized by setting it to a small but no zero value, such as 0.01 or 0.02 [49, 50]. The 
maximum-likelihood estimation technique was used to estimate the curve parameters α and β [51, 52].  
 
Figures 8 and 9 present the obtained psychometric functions from the first psychophysical experiment. 
Tables III and IV include measures of the obtained PFs: a) the estimated function parameters α and β, 
b) the α and β estimated standard errors (SE), c) the value of goodness of fit (pDev), and d) the value, 
in kbps, that corresponds to the 75% proportion of observers yes responses. 
 
The α and β parameters are just estimates of the true parameters of the sensory mechanism. The errors 
on the estimated parameters were derived by implementing a non-parametric bootstrap analysis, which 
is a Monte Carlo re-sampling technique. Bootstrap methods produce simulated repetitions using the 
data from the original experiment [53, 54]. The standard deviation among the obtained values from the 
simulated experiments is used as the measure for standard error. In this investigation the recommended 
400 converged simulated experiments were used in order to obtain the errors [50]. Stimulations that did 
not converge were excluded. A parametric method is most frequently suggested when the PF is a good 
fit to the data points [50]. A non-parametric method was employed in order to sustain a harmonized 
analysis among all the fitted PFs, the good ones and the less good ones. Additionally, there is a 
controversy on which of the two methods produces better error estimates [55].  
 
The goodness of fit is a measure that describes how well the curve fits the data. The measure derives 
the pDev value (i.e. is the statistical p-value) that ranges between 0 (a bad fit) to 1 (the best fit). When 
the pDev value is less than 0.05 then the fit is considered unacceptably poor. When the curve falls 
precisely on the points then this indicates a good fit. The goodness of fit measure was calculated using 
400 bootstrap simulated experiments and the method is illustrated in [49]. Both α and β were set as free 
parameters and λ as a fixed parameter during the process of estimating the errors and the pDev values. 
The 75% of yes responses was taken as the just noticeable difference (JND) point on the psychometric 
curve to identify the acceptable bitrates for the scenes under test. It is typically the value used in 
qualitative work relating to imaging science [46, 56]. The 50% is defined as the absolute threshold. 
This is the point where the observers are starting to seeing, in this case, the compressed version to be 
equal in terms of usefulness with the reference [57]. The subsequent sections provide the analysis of 
the results from the first psychophysical investigation.  

3.1 Psychometric curve fitting  
 
Figure 8 and table III present the results derived from fitting psychometric curves to the data, for each 
observer group. Figure 9 and table IV present the results from the 25 scenes under investigation. The 
errors on the obtained β parameters were greater than for the α parameters. Error values could be 
reduced by increasing the number of observers and, also, by having a better distribution of stimulus 
intensities. In image related investigations, it is recommended to use between ten to thirty observers. 
The use of more observers will increase the precision of the estimated values (decrease the error) and 
not their accuracy [36]. The error estimates in this work are included only for references. The fitting 
results have shown the pDev values to score above 0.05 for all the scenes and thus all the fitted curves 
are acceptable (see tables III and IV).  



 
Fig. 8. Psychometric curves for each observer group. The average value of all the tested scenes was used for each observer 
group.  

TABLE III 
DATA FROM CURVE FITTING FOR EACH OBSERVER GROUP 

 α SE β SE pDEV 75% 
(KBPS) 

BUS ANALYSTS 2.804 0.042 7.736 2.429 0.977 894 

MPS POLICE 2.840 0.048 6.888 2.516 0.950 1014 

MPS SURVEILLANCE 2.661 0.038 11.308 3.400 0.923 578 
Illustrates the parameter estimates along with their estimated standard error (SE) for the different groups of observers. The 
goodness of fit is given by the pDev value. The 75% of yes responses, in kbps, for each curve is also provided. 

The police officers have tolerated less compression for maintaining usefulness, from the original 
reference, than the bus analysts and surveillance officers (see figure 8). The point at 75% of yes 
responses for the police officers were at 1014kbps, for the bus analysts at 894kbps, and for the 
surveillance officers at 578kbps (see table III). The bus analysts are considered as having the highest 
technical understanding of video compression and video systems, followed up by the surveillance 
officers and last the police officers. The surveillance officers have started as police officers and their 
work, in most cases, involves monitoring (such as following and recording) targeted individuals and 
gathering evidence to present in court or to help with a case. Their experience and in general the use of 
different sources of information of the targeted individual (e.g. knowing where the individual has been 
helps to identify the correct CCTV system to extract supportive imagery) make even a highly 
compressed CCTV imagery useable for the completion of their task. This is not the case for the police 
officers as the individuals are often unknown and thus making an identification task from facial 
imagery more difficult.   

TABLE IV 
CURVE FITTING DATA FOR EACH OF THE 25 SCENES 

SCENE 
NAME  α SE β

 
SE pDEV 

75%  
(KBPS) 

SCENE 
NAME  α SE β

 
SE pDEV 

75%  
(KBPS) 

S1 2.611 0.016 26.917 5.699 0.930 450 S14 2.891 0.018 14.359 1.917 0.058 934 

S2 2.640 0.020 13.553 2.234 0.135 529 S15 2.677 0.018 22.214 5.147 0.925 534 

S3 2.721 0.022 16.374 2.904 0.730 617 S16 2.659 0.017 25.929 5.302 0.388 505 

S4 2.683 0.020 17.017 2.663 0.223 562 S17 3.079 0.014 14.522 2.241 0.305 1437 

S5 2.795 0.019 13.901 2.959 0.868 753 S18 2.709 0.021 15.07 1.897 0.145 609 

S6 2.659 0.021 16.199 3.127 0.150 536 S19 2.828 0.016 17.881 3.744 0.153 780 

S7 2.530 0.000 524.084 0.000 0.845 340 S20 2.634 0.022 15.346 12.334 0.103 510 

S8 2.531 0.000 531.635 0.000 0.198 341 S21 2.728 0.021 17.246 4.836 0.978 623 

S9 2.747 0.021 19.426 5.724 0.673 639 S22 2.709 0.028 13.1 1.925 0.423 625 

S10 2.856 0.015 21.501 5.318 0.798 811 S23 2.662 0.020 17.228 3.590 0.068 535 

S11 2.953 0.018 15.565 2.421 0.715 1063 S24 2.665 0.018 19.923 12.208 0.063 530 

S12 3.057 0.018 10.441 1.300 0.863 1467 S25 2.825 0.017 15.877 2.476 0.553 788 

S13 3.044 0.019 9.252 1.063 0.090 1469        

The parameter estimates along with their estimated standard error (SE) for each of the 25 scenes under investigation. The 
goodness of fit is given by the pDev value. The 75% of yes responses, in kbps, for each curve is also provided. 



 
Fig. 9. Three example psychometric fitted curves, for scenes S1, S9 and S14. With high, medium and low derived pDev values 

respectively.   

Few of the scenes have fallen under the exact combination in terms of camera to subject distance, scene 
brightness and so on (see table I). For example, scenes S1 (75% =450), S2 (75%=529), and S3 
(75%=617) represent one exact combination, where 75% is the proportion of yes responses (see table 
IV). Another exact combination is for scenes S11 (75%=1063) and S12 (75%=1467). One more is for 
scenes S20 (75%=510) and S21 (75%=623). Lastly, another one is for scenes S23 (75%=535) and S24 
(75%=530). Most of the exact combinations have produced similar results except for S11 and S12, 
where the difference is more than 300kbps. Furthermore, in the high brightness group of scenes (S15, 
S16, S17, S18, and S19) only S17 was affected to a greater degree by compression than the rest. The 
presented scene characterization methods might not be enough in order to describe the properties of the 
scenes/faces. For example, the results could be influenced by the degree of distinctiveness/uniqueness 
or overall appearance of the actual faces in the scenes. Distinctive faces are more memorable [58]. 
Bruce et al have found that distinctiveness correlates with how much a face deviates from an ‘average 
face’ [59]. Perhaps, distinctive faces (e.g. Arnold Schwarzenegger) can take more compression than 
typical faces (e.g. Leonardo DiCaprio) [58]. Furthermore, Penry provides guidance on how facial 
features/shapes can be classified [60].  
 
3.2 Comparison of the characterized groups  
 
The point at 75% (in kbps) of yes responses for each of the 25 scenes was chosen for further analysis. 
This analysis investigates the differences and similarities between the characterized groups. Table V 
illustrates the descriptive statistics for each group. Mostly, the statistics describe the variability of the 
obtained values of the scenes in each group. The values of the mean and the median for each group are 
similar, a result indicating near normal distributions. Although, parametric statistics are used with 
normal distribution, in the following analysis a non-parametric method was used due to the small 
number of scenes in each group.  
 

TABLE V 
DESCRIPTIVE STATISTICS AT 75% OF YES RESPONSES 

GROUP 
NAME  N RANGE MIN MAX MEAN MEDIAN STD 

SCENE BRIGHTNESS 
MED (BUS) 5 303 451 753 582 562 113 
MED (DAY) 5 471 340 811 533 536 202 
LOW (DAY) 4 534 934 1469 1233 1265 276 
HIGH (DAY) 5 933 505 1437 773 609 386 
MIXED (DAY) 6 278 510 788 602 579 104 

CAMERA TO SUBJECT DISTANCE 
CLOSE 12 1127 340 1467 652 534 325 
FAR 13 1127 341 1469 784 753 335 

ANGLE OF FACE TO THE CAMERA 
FRONTAL 13 1128 340 1469 778 536 421 
TILTED 12 593 341 934 656 624 163 

SCENE BUSYNESS 
HIGH SPA. 

HIGH TEMP. 9 964 505 1469 1010 934 372 
LOW SPA. 

LOW TEMP. 5 277 340 617 500 529 108 
HIGH SPA. 
LOW TEMP. 7 447 341 788 568 535 135 
LOW SPA. 

HIGH TEMP. 4 243 510 753 606 579 110 
Where N is the number of scenes in the group. Range is the difference between the minimum (MIN) and maximum (MAX) 
values. The range, mean, median and standard deviation (STD) are measures of variability of the obtained values of the scenes in 
the group. 

 



Table VI shows the results from the Wilcoxon Rank Sum Test [61]. This is a non-parametric test that 
ranks the values of two independent samples and compares the differences between the two rank totals. 
This method focuses on the median rather than the mean. It derives the p statistical value at 0.05 
significance level, below which two groups will be considered as statistically different. This method 
allows gathering the similar groups into a single one.  
 

TABLE VI 
WILCOXON RANK SUM TEST 

(I) GROUP (J) GROUP MEAN 
DIFFERENCE 

p h 

SCENE BRIGHTNESS 
MED (BUS) MED (DAY) 49 0.841 0 
 LOW (DAY) 651 0.016  1 * 
 HIGH (DAY) 191 0.548 0 
 MIXED DAY 19 0.662 0 
MED (DAY) LOW (DAY) 700 0.016  1 * 
 HIGH (DAY) 240 0.548 0 
 MIXED (DAY) 68 0.931 0 
LOW (DAY) HIGH (DAY) 460 0.063  0 * 
 MIXED (DAY) 631 0.009  1 * 
HIGH (DAY) MIXED (DAY)  171 0.931 0 

CAMERA TO SUBJECT DISTANCE 
CLOSE FAR 134 0.097  0 * 

ANGLE OF FACE TO THE CAMERA 
FRONTAL TILTED 122 0.765 0 

SCENE BUSYNESS 
HIGH SPA.  
HIGH TEMP. 

LOW SPA.  
LOW TEMP. 

510 0.007  1 * 

 HIGH SPA.  
LOW TEMP. 

442 0.016  1 * 

 LOW SPA.  
HIGH TEMP.  

405 0.050  0 * 

LOW SPA.  
LOW TEMP. 

HIGH SPA.  
LOW TEMP. 

68 0.343 0 

 LOW SPA.  
HIGH TEMP.  

106 0.286 0 

HIGH SPA.  
LOW TEMP. 

LOW SPA.  
HIGH TEMP.  

38 0.788 0 

The (I) group is compared against the (J) group. When the p – value is less then 0.05 then the groups are significantly different. 
Significantly different groups have scored 1 in the h column and marked with an asterisk. The 0 values in the h column that have 
been marked with an asterisk are results that are marginally significant.  
 
The variability measures (in particular range and standard deviation) in table V are not small enough to 
allow a single model of a psychometric curve to be representative of all the scenes in each group. 
Instead, table VI reveals the similarity/difference between each grouped category. For example, when 
two groups are similar then they could be further classified to the same group (e.g. no significant 
difference between ‘medium brightness – bus illumination’ and ‘medium brightness – daylight’ scene 
groups).  
 
The results have shown that the ‘low – daylight’ brightness group is significantly different from all the 
other brightness groups except for group ‘high – daylight’, which it is marginally significant. The 
groups ‘medium – bus illumination’, ‘medium – daylight’, ‘high – daylight’ and ‘mixed – daylight’ can 
be further classified to the same group as there is not a significance difference among them. The ‘low  
– daylight’ scenes were affected more by compression than the rest of the brightness groups as the 
mean value of the scenes for the 75% of yes responses is at 1233kbps where for the rest of the 
brightness scenes is less than 773kbps (see table V). 
 
There is marginally significant difference between the two camera to subject distance groups (table VI) 
were scenes in the far distance group (mean value of 75% yes responses at 784kbps) were affected 
more by compression than the close distance group (mean value at 75% yes responses at 652kbps - see 
table V).  
 
There was no a significance difference between the two angle of face to camera plane groups so they 
could be further classified to the same group. This requires a further investigation with perhaps higher 
degrees of tilted angles.  
 



The busyness of the scenes affected compression performance. Scenes with ‘high spatial – high 
temporal’ busyness were significantly different from all the other busyness groups, except for group 
‘low spatial – high temporal’ which it is marginally significant (see table VI). All the busyness groups 
excluding the group of  ‘high spatial – high temporal’ can be classified into one group. The scenes in 
the ‘high spatial – high temporal’ group have given a mean value of 1010kbps for the 75% yes 
responses whereas for the other groups it is around 550kbps (see table V).  

4 Results from Testing of the CCTV Systems with the Selected Key Scenes 
One scene from each of the following four scene brightness groups was selected: ‘high – daylight’, 
‘medium –daylight’, ‘medium – bus illumination’ and ‘mixed – daylight’. A further two scenes from 
the ‘low – daylight’ group were selected. All six scenes, were these most affected by the compression. 
These key scenes (illustrated in Figure 10) were given to the CCTV suppliers for further investigation 
of the acceptable compression bitrates on London buses.   
 

 
Fig. 10. The selected key scenes. 

Figure 11 illustrates an example of the output of the CCTV systems (labelled A, B, C, D and E) for key 
scene S12. As mentioned above, in most cases the CCTV systems exported, 1 field from the 8 
reference fields of the face. Even a small changeability in terms of subject to camera distance within 
each individual scene has affected the obtained results. For example, system C in Figure 11 has 
obtained more yes responses at 736kbps than at 1120kbps because at 736kbps the face is closer to the 
camera.  This could have been completely controlled by using still images, but it would not have 
replicated reality.  
 
Additionally, Figure 11 illustrates an example of the visual differences between the outputted images 
from each CCTV system. System C has brightener the scene (by enhancement) whereas compression 
artefacts are more visible for systems D and E. The systems are behaving differently among them even 
though all of them are based on the H.264/MPEG-4 AVC compression standard. This presents 
challenges in drawing conclusions about universal ‘average’ bitrates.  

 

 
Fig. 11. An example of the outputs of the CCTV systems (labelled A, B, C, D, and E) for key scene 12. The images on the top 
row are the 8 images of the reference. The second row shows the exported images from system A at different kbps (e.g. between 
10 – 1504 kbps). The third row shows the exported images from System B and so on. 

The results from the second psychophysical investigation illustrate the probabilistic nature of CCTV 
systems. For example, by reducing the frame-rate from 25 to 4 has outputted one image from the eight 
images of the face. This outputted one image might be the worst, or the best-case scenario from the 
eight available images of the face. Even a slight difference in terms of camera to subject distance 
within each individual scene has been shown to affect the results for the CCTV systems. For this 



reason, the analysis of the results is based on the performance of all five CCTV recording systems for 
each key scene. The same curve fitting method from the first psychophysical experiment was applied. 
Three curves were fitted for each key scene: a) the worst performance to the minimum points (lowest 
fit), b) the middle performance to the average points (average fit), and c) the best performance to the 
maximum points (highest fit). The lapse rate (λ) was fixed for most fittings at 0.01 except for 
S12HIGHEST were the value was fixed at 0.02 (i.e. produced a more acceptable fit to the data points).  
 
Figures 12 and Table VII present the results obtained from the testing of the CCTV systems. TfL was 
after the absolute minimum bitrate to maximize data storage, so the 60% of observers yes responses 
was used instead of the standard 75%. 
 

 
Fig. 12. Psychometric curves for each key scene. Three curves were fitted to all the data points derived from all the systems for 
each scene: a) worst performance curve using the lowest points (lowest fit) b) average performance curve using the average 
points (average fit), and c) best performance curve using the highest points (highest fit). 

TABLE VII 
DATA FROM CURVE FITTING FOR EACH KEY SCENE FROM THE CCTV SYSTEMS 
SCENE 
NAME  α SE β

 
SE pDEV 

60%  
(KBPS) 

S5LOWEST 2.799 0.063 3.434 0.709 0.495 840 

S5AVERAGE 2.563 0.075 3.639 0.822 0.898 480 

S5HIGHEST 2.37 0.076 5.958 4.513 0.510 277 

S10LOWEST 2.906 0.047 5.216 1.033 0.083 975 

S10AVERAGE 2.707 0.042 6.327 1.829 0.653 596 

S10HIGHEST 2.599 0.03 15.27 8.094 0.640 423 

S12LOWEST 2.974 0.031 8.717 1.982 0.805 1055 

S12AVERAGE 2.792 0.042 6.959 1.504 0.895 714 

S12HIGHEST 2.552 0.001 127.817 6.156 0.174 357 

S13LOWEST 3.149 0.066 1.588 1.588 0.650 1716 

S13AVERAGE 2.949 0.062 4.14 1.038 1.00 1131 

S13HIGHEST 2.713 0.052 5.356 1.443 0.090 621 

S17LOWEST 3.199 0.092 4.444 1.175 0.725 1977 

S17AVERAGE 2.887 0.055 4.324 1.04 0.950 969 

S17HIGHEST 2.642 0.056 6.65 1.77 0.685 509 

S25LOWEST 2.932 0.059 3.923 0.862 0.348 1100 

S25AVERAGE 2.695 0.068 3.502 0.827 0.808 657 

S25HIGHEST  2.338 0.107 3.114 0.656 0.273 299 

Illustrates the parameter estimates along with their estimated standard error (SE) for each curve. The goodness of fit is given by 
the pDev value. The 60% of positive responses, in kbps, for each curve is also provided. 

5 Comparison between CCTV and Industry  
Table VIII, shows a comparison between the results from the consumer industry compressor (MPEG 
Streamclip – SC) in the first investigation and from the CCTV systems in the second investigation at 



60% of yes responses for each key scene. This comparison helps to understand the performance of 
CCTV recording systems and thus employ appropriate testing methods for such systems.   
 

Table VIII 
A comparison between CCTV and Industry compressors at 60% of yes responses for each key scene. 

SCENE NAME  S5 S10 S12
 

S13 S15 S25 

INDUSTRY (SC) 670 752 1255 1231 1285 711 

CCTV LOWEST FIT 840 975 1055 1716 1977 1100 

CCTV AVERAGE FIT 480 596 714 1131 969 657 

CCTV HIGHEST FIT 277 423 357 621 509 299 

 
The performance of the consumer industry compression at 60% of yes responses is in most cases in the 
middle between the worst (lowest fit) and average (average fit) values of the CCTV systems. Also, the 
CCTV systems for all the fits have performed better than the consumer industry compression for scene 
12 (required less bitrate to maintain facial information). This is because the CCTV systems have 
enhanced the dark areas by making them look brighter and thus revealed more information within the 
image. Additionally, it is observed that the CCTV systems might have performed some sharpening to 
the images, as a result making the information more visible. This does not mean that the image itself 
will have more information than the consumer industry compressed version. For example, the highest 
and average curve fits of the CCTV systems outperformed the consumer industry compressor by 
requiring less bitrate.  

6 Conclusion 
Acceptable bitrates for video compression depend largely upon scene content properties. Very dark 
scenes, far distance scenes and scenes with high levels of spatial-temporal busyness were found the 
most challenging to compress, requiring higher bitrate to maintain useful facial information, necessary 
for face identification.  
 
Less facial information in the reference scene requires higher bitrates (lighter compression) to sustain 
the useful information. This can be seen in the results derived for scene brightness and camera to 
subject distance groups. The low brightness and far distance groups could be considered as having less 
useful facial information in the reference (in comparison to the medium brightness and close distance 
groups) and they were affected more by compression than the rest of the groups.  
 
The application (linked to TfL) was seeking the absolute minimum bitrate to maximize data storage, so 
a 60% of observers yes responses was recommended to be used on London buses, which is higher then 
the absolute threshold of 50%. It was recommended that, during daytime, when there is variable 
illumination, to set the bitrate to approximately 1977kbps (derived from the worst performance curves, 
scene 17) and during night-time, when the bus illumination is on, to reset the bitrate to around 840kbps 
(derived from the worst performance curve for constant bus illumination, scene 5). The findings of this 
study can be easily extended to others applications. 
 
Future work will involve further investigation into: i) sharpness assessments of CCTV cameras systems 
using the SFR measure, ii) assessment of additional scenes with more groups (e.g. more subject to 
camera distances, angle to the camera plane and brightness variations), iii) how face distinctiveness 
affects acceptable compression levels, iii) the relationship between image usefulness and frame-rate, 
iv) the use of the same scenes to assess performance of automated face recognition systems, and v) 
similarly to the use of facial information, garments can be characterized and investigated.  
 
Additionally, findings of this and future investigations could be employed in the creation of quality 
metrics. For example, a study by Maalouf et al [62] has focused on monitoring quality of legal 
evidence images in video-surveillance applications by using a combination of a tracking algorithm, a 
quality metric and a super-resolution algorithm. Furthermore, a more challenging task will be to define 
quantitatively the relationship between video parameters (e.g. frame rate, bitrate) and image attributes 
(e.g. busyness, lightness) with the acceptability of usefulness of the face. 
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