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Abstract Edge microservice applications are becom-
ing a viable solution for the execution of real-time
IoT analytics, due to their rapid response and reduced
latency. With Edge Computing, unlike the central
Cloud, the amount of available resource is constrained
and the computation that can be undertaken is also
limited. Microservices are not standalone, they are
devised as a set of cooperating tasks that are fed
data over the network through specific APIs. The
cost of processing these feeds of data in real-time,
especially for massive IoT configurations, is how-
ever generally overlooked. In this work we evaluate
the cost of dealing with thousands of sensors sending
data to the edge with the commonly used encoding
of JSON over REST interfaces, and compare this to
other mechanisms that use binary encodings as well as
streaming interfaces. The choice has a big impact on
the microservice implementation, as a wrong selection
can lead to excessive resource consumption, because
using a less efficient encoding and transport mech-
anism results in much higher resource requirements,
even to do an identical job.
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1 Introduction

The Internet of Things (IoT) is a well-known paradigm
that envisions the interconnection and the exchange
of data between many of the physical objects that
surround us [13]. Billions of machines, devices, and
“things” are responsible for the generation of mas-
sive amounts of data that need to be stored, processed
and presented in an efficient, homogeneous and eas-
ily understandable form. If this data can be gathered
and processed in real-time, for instance, a factory pro-
duction line might be controlled while it operates,
to identify potential anomalies and products’ defects.
Similarly, real-time data information on a person’s
heartbeat might be used to save lives and even predict
ailments in advance [41].

Real-time IoT analytics aims to provide optimised
IoT services by analysing the collected IoT data –
using distributed network, computation, and storage
resources – within a fixed time. Effectively leveraging
the right IoT data at the right moment, to create proac-
tive and predictive business models, is not straight-
forward. Moreover, due to the massive volume of
generated data and the stringent time constraints, tra-
ditional cloud computing is not effective in this type of
scenario. As such, real-time IoT analytics is receiving
a great deal of attention, e.g., from research initiatives
on In-Network Control [18] and Edge Computing [28].

The edge has been gaining a consensus as one of
the most viable approaches for the execution of real-
time IoT analytics tasks [38]. It can help reduce the
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processing latency as data can be processed closer to
the source instead of being sent to the central cloud.
However, the edge also introduces limitations in the
amount of available resources and, as consequence,
the way the “things” located in the IoT Domain inter-
act with the edge processing applications becomes
a very important research aspect that should not be
overlooked [2].

Emerging application design patterns use fine-
grained and independent blocks in order to build
software systems. Rather than developing an appli-
cation as a single monolithic piece, microservices
and Function as a Service (FaaS) architectures rely
on autonomously-running components, each dealing
with a smaller specific task, usually deployed in
a lightweight containerised environment [21]. These
models certainly offer intrinsic advantages, such as
more agile software development and maintenance
workflows, continuous integration / deployment, and
even transparent support for dynamic scaling. The
individual components of microservices applications,
built with most of the currently available frameworks,
either expose APIs based on REST endpoints [43],
or support data streaming via lightweight messag-
ing protocols like MQTT [26]. HTTP-based REST
with JSON has become the de-facto standard interface
for synchronous interaction with those applications
[14]. Although it provides loose coupling with a high
degree of interoperability, allowing it to be used by
applications or browsers distributed over the Inter-
net, we ask the question: can it also be considered
as the right option for edge applications that perform
real-time IoT analytics tasks?

Through an extensive evaluation of a number of
alternative technologies used for the design of the
interfaces exposed by IoT edge analytics applications,
this paper answers the above question. Its main contri-
bution is to provide an in-depth analysis and compar-
ison of various data encoding, messaging protocols,
and transmission mechanisms that can be utilised
specifically for the communication between the IoT
domain and the Edge. The evaluation of the costs of
processing and transmitting data has been considered
by different research communities [8, 10, 14, 19, 25,
36]. However, we argue that a comprehensive study
that encompasses performance evaluation of IoT data
encoding and transmission protocols, as well as edge
computing and (interface) applications design is miss-
ing for large-scale scenarios; moreover, some of the

available results are currently being overlooked or
ignored due to silo effect.

The evaluation of these mechanisms is supported
by an actual distributed IoT system that was built,
and deployed on a real testbed, in order to orchestrate
and monitor the generation, collection and process-
ing of IoT data in the Cloud-to-Edge continuum. Tens
of thousands of IoT devices were utilised to transmit
data to IoT edge analytics applications via different
types of communication mechanisms: the most com-
monly used synchronous REST/JSON interface was
compared with alternative approaches based on binary
encodings as well as streaming mechanisms.

The development of a Programmable Massive IoT
Platform, which was utilised in order to build the
large-scale IoT testbed and generate the huge amount
of data required for our evaluation, is the second main
contribution of this work. Even though physical IoT
devices could have been used for building this system,
we chose software sensors in order to minimise the
cost of the hardware required by our large-scale IoT
deployments while maximising the flexibility of the
experimental environment. This fully distributed plat-
form allowed us to manage and orchestrate the system
entities required for the various experiments (such as
the IoT elements, the processing functions, etc.) in
a programmable way and under fully automated soft-
ware control.

Nonetheless, the validity of our experimental results
was not impacted by the usage of the above software
sensors as the IoT data generation and collection pro-
cess is completely transparent to the edge nodes. The
details of how the data required for the execution of
large-scale IoT experiments is generated and gathered
is not relevant for the edge, as long as actual net-
work packets are delivered to it via different types of
data encoding, transport mechanisms, and interfaces.
Finally, our experimental analysis did not require any
simplifications to the software stack and allowed to
uncover any problems that might be induced by the
timing of messages, as opposed to the behaviour of
discrete event generators utilised in simulations [22].

Our results show that, when doing real-time edge
processing, all of the above aspects related to data
encoding and transmission have a big impact on the
implementation of microservices, and that a wrong
choice can lead to excessive resource utilisation. The
higher the processing cost and resource usage when
dealing with the incoming data, the less resource is
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available for the analytics tasks. As a consequence,
more edge node resources are consumed and higher
bills are generated. We demonstrate in this paper that
these mechanisms greatly affect both the number of
bytes transmitted over the network, and the overall
consumption of CPU and memory resources required
to perform real-time analytics at the edge. This is par-
ticularly important when the relatively small amount
of edge resources is considered together with the poten-
tial massive scale of the IoT data to be processed.

2 Background and Related Works

Real-time IoT analytics targets the enhancement of
IoT business applications and services by performing
the analysis of huge sets of IoT data within a strict
fixed time. The concepts of edge and fog can dramat-
ically reduce the latency by bringing the computing
nodes closer to the data sources [41]. Whilst this
approach perfectly matches the demands for rapid pro-
cessing of large amounts of data of some emerging use
cases, such as smart health, co-operative intelligent
transport systems and Industry 4.0 [38], it also intro-
duces a new set of challenges related to the end-to-end
orchestration of resources, i.e., from the “things” to
the cloud.

Existing works in this area include the automated
distribution of data, between the edge and the cloud,
according to both the dynamic conditions of the IoT
infrastructure and the applications requirements [28];
the evaluation of networking and computing capabil-
ities of edge nodes, along with their reliability, as
part of a score-based edge service scheduling algo-
rithm [3]; the combined usage of discrete optimi-
sation algorithms and task prioritization methods to
find the best task execution order for scientific work-
flows [15]; algorithms for workload allocation that
trade-off energy consumption and delay [1]; unified
management of edge and cloud resources for IoT with
fault-tolerance capabilities [17]. We noticed that the
analysis of the impact of the transmission mechanisms
between the IoT and the edge domains is not taken into
account in the design of the above solutions.

Edge computing is supported by the growth of
emerging technologies, such as container-based vir-
tualisation and microservices [2]. When microservice
architectures are considered, it is fundamental ensur-
ing adequate quality aspects for their APIs in terms

of functionality, as well as reliability, performance
(e.g., network latency), security, and scalability [43,
44]. Existing works in this context provide a perfor-
mance evaluation of some API implementations. The
usage of RabbitMQ and RESTAPIs has been analysed
for microservice web applications [14], and experi-
ments show that, when a large number of users send
parallel requests to the same web application, the Rab-
bitMQ approach offers better performance compared
to REST.

Additional studies evaluate the usage of various
messaging protocols in the context of Vehicular Cloud
Computing [19] and IoT [8, 25, 36]. Established tech-
nologies include MQTT and CoAP [27]. MQTT [26]
supports the publish/subscribe model, and is designed
for lightweight machine-to-machine communications
in constrained networks via an intermediate broker.
It uses a binary data encoding and either TCP or
WebSocket as the transport protocol. MQTT is the
most widely adopted protocol in IoT [36]; it is more
suitable for usage on devices with no power con-
straints and for multi-cast applications. However, the
presence of a single intermediate broker poses both
fault-tolerance and scalability issues [25]. CoAP [32]
is another lightweight protocol that supports both
request/response and a variant of the publish/subscribe
architecture. It was designed to inter-operate with HTTP
and RESTful Web Applications. Like MQTT, CoAP is
based on a binary data encoding but uses UDP as the
transport protocol. As such, CoAP offers reliable data
transfer with higher delays [25]; it also shows higher
throughput compared to both MQTT and HTTP in the
context of Vehicular Cloud Computing [19].

The usage of platform-neutral IoT data interchange
formats is a key aspect to enable portability, interoper-
ability, and efficient transportation [9]. Self-describing
formats, such as XML and JSON, and binary (schema-
based) formats, like XDR [34] and Protocol Buffers
[12], have their advantages and drawbacks: the self-
describing ones are human readable and easy to under-
stand, but, from the transmission perspective, they
contain redundant components that affects the size
of data transfers; the binary formats are not human
readable but are more efficient for transmission [10].

The performance evaluation of data encoding and
transmission technologies should ideally consider the
scalability aspects [43]. However, this analysis is
not always straightforward, especially for large-scale
distributed systems, such as massive IoT scenarios,
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where thousand of physical objects may be involved.
A cost-efficient approach, which allows testing
beforehand the suitability of those systems for the exe-
cution of specific applications, is based on the usage
of either simulators or emulators. MAMMotH is a
large-scale IoT emulator that can be used for the def-
inition of experiment scenarios, their deployment on
a testbed, and the collection of the associated results
[22]. An alternative solution utilises container-based
virtualisation in order to build a large-scale testbed
for wireless / IoT networks [24]. A simulation method-
ology can also be suitable for testing IoT systems
with a large number of interconnected devices from an
application-layer perspective [4].

In this section, we see how recent research works
target different aspects of the end-to-end orchestra-
tion of edge and cloud resources, however, the details
of the impact of both data encoding and transmis-
sion in those systems is usually not discussed. Also,
microservices represent a viable design pattern for
edge applications, provided that the API whereby they
can be accessed is carefully designed to support the
expected functional and non-functional requirements
[43, 44]. Existing performance analysis has shown
how the API design is impacted by the choice of the
network transport protocol [14]. Similar performance
analyses consider the communication of entities in
the IoT context and show the usage of different data
formats [9, 10], messaging protocols and network
transport mechanisms [19, 25, 27, 36].

Although different studies have been conducted
in different areas, we argue that a systematic uni-
fied evaluation that considers the impact of data
encodings and transport mechanisms end-to-end, from
the IoT devices to the edge processing functions is
missing. Moreover, existing studies do not consider
large-scale scenarios with tens of thousand of com-
municating entities. Evaluating the scalability of those
technologies is indeed very important, but not always
straightforward. Either emulated [22, 24] or simulated
[4] approaches may support the design of large-scale
systems before their actual implementation. Unfortu-
nately, some of the existing frameworks either con-
sider only the wireless communication layer [22] or
support small IoT topologies with limited programma-
bility features [24]; others, could provide results that
lack of completeness due to the usage of simulations
[4]. This paper overcomes those limitations with the
introduction of a distributed and fully Programmable

Massive IoT Platform that deals with the automated
management of thousands of sensors sending data to
the edge, allowing the evaluation of the cost of various
encoding and transport mechanisms.

3 IoT Analytics Scenario

This section provides an overview of a distributed
IoT computing scenario, namely a system able to per-
form various functions on a very large set of data
generated by a massive number of IoT devices. It
encompasses ten to hundreds of thousands entities
generating streams of data that need to be analysed
in order to extract valuable information. Common IoT
analytics scenarios include Smart Home / City, Dis-
aster Management, Healthcare, Transportation and
Industrial IoT / Smart Factory use cases [28, 41].

In a Smart Factory, for instance, the system would
collect and process data in order to control a produc-
tion line, identifying potential anomalies and prod-
uct’s defect in real-time, or even supporting “smarter”
production processes via the execution of particu-
lar predictive data analytics. Similarly, in a Smart
City scenario, CCTV cameras and analytics functions
would be utilised to process video frames in order to
detect and prevent specific situations in real-time, e.g.
accidents, crimes, potential threats, or recognise spe-
cific features (face recognition, demographics, etc.).

Figure 1 shows a design of such a Cloud-to-Thing
system: in the IoT Domain, the data generated by the
IoT devices are received by the IoT Gateways and are
gathered, aggregated and adapted by the IoT Adapta-
tion Layer, which acts as a local data pre-processing
(preparation) function. We assume that further data
processing will not happen locally (e.g., in the Smart
Factory) and will be delegated to a remote processing
site located at the edge. Although some IoT may offer
embedded computation capabilities, in this work we
mainly consider lower power consumption devices,
that do not provide such a feature. As such, the IoT
Adaptation Layer is responsible for sending those pre-
processed data to the Edge Domain, where they will be
received by the Real-time Edge Processing function.

In this scenario, this function performs real-time
analytics on the received data, in order to extract
knowledge that will be utilised to provide feedback to
the IoT Domain through the highlighted red (inner)
control loop shown in Fig. 1. Additional long-term
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Fig. 1 IoT analytics
scenario

processing operations, which do not need to be per-
formed with strict low-latency requirements, will
instead be performed in the central cloud infrastruc-
ture. In this case, data might still be first processed
at the edge and the results stored within a data lake,
which will decouple edge processing from long-term
processing operations. The result of the latter oper-
ation will again be provided as feedback to the IoT
Domain through the green (outer) control loop repre-
sented in the figure.

This paper is specifically focussed on the IoT data
collection / adaptation, and on the real-time edge ana-
lytics. It investigates how the components involved in
both these tasks have to be designed in order to guar-
antee efficient real-time processing functionality on
large-scale streams of data.

The particular design chosen for the interfaces
(e.g., APIs) of the Real-time Edge Processing has the
biggest impact on the edge resource utilisation. As
such, the data encoding and the network transport
technologies utilised when data are sent from the sen-
sors to the edge should both carefully be evaluated in
order to avoid excessive processing cost and resource
utilisation.

We now describe what are the features that the
functional blocks should include, across the various
Domains of Fig. 1.

3.1 IoT Adaptation Layer

The IoT Adaptation Layer is the system functional
block that takes care of gathering data from possibly

different types of IoT devices, regardless of their spe-
cific implementation. It works as an adaptation layer
by providing the mechanisms to pre-process (e.g., re-
encode, re-aggregate) the collected data before they
are sent to the Edge Domain for the first stage of
(real-time) processing. Considering the heterogene-
ity of different IoT devices, several types of data
encoding might be utilised within an IoT Domain.
The IoT Adaptation Layer is responsible for hiding
these different technologies and providing a homo-
geneous set of data to the edge, based on a specific
encoding / serialisation approach. Such adaptation lay-
ers are often used in orchestrated distributed cloud
environments for normalization of data [40].

This part of the system also takes care of trans-
mitting the set of measurements towards the Edge
Domain, where the first stage of processing will take
place. The data is transmitted over the network to the
Real-time Edge Processing using a specific network
transport technology. The type of data encoding and
the mechanism utilised to transmit the pre-processed
data over the edge network depend on the particu-
lar design and implementation of the Real-time Edge
Processing and of the IoT Adaptation Layer functions.

3.2 Real-time Edge Processing

The Real-time Edge Processing is the function of
the IoT analytics system responsible to perform real-
time processing on the set of data coming from the
IoT Adaptation Layer. We assume this function to be
designed to include a dynamic number of processing
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elements that can be created and destroyed on-demand,
under orchestrator control, according to the character-
istics of the received data. This processing is expected
to happen without the use of intermediate long-term
storage in order to minimise the end-to-end processing
latency [6].

Choosing the proper design and implementation for
the Real-time Edge Processing function is therefore
of utmost importance. A wrongly made design deci-
sion for the type of data encoding and / or the type of
network transport mechanism of the associated API,
may overload the constrained resources available at
edge, and potentially jeopardise the main point of this
functional block, i.e., to provide support for real-time
analytics.

As an example, if the Edge Domain hosted a FaaS
framework, such as OpenFaas [21], the running appli-
cations would be based on loosely coupled software
containers accessible via a REST API. Data could be
sent to the ingress point of that application via POST-
ing (JSON) encoded content to a specific REST end-
point, and a reply would be sent back for each invo-
cation. Later on, we will see how this approach has a
different impact on the usage of the edge network and
computational resources when compared, for instance,
to another application that receives streams of XDR
encoded data via WebSocket.

3.3 Long-term Cloud Processing

The Long-term Cloud Processing Layer is the sys-
tem component that deals with processing tasks that
are not expected to be performed with strict real-time
guarantees and usually require additional resource
capabilities compared to the ones available at the edge.
It is considered as out of the scope of this paper.

4 IoT Analytics System Implementation

Here we present our implementation of an IoT ana-
lytics scenario. It is based on a software system
that supports the generation and transmission of data
streams – from the IoT Domain to the Edge Domain –
through various data encodings and network transport
mechanisms.

It has to reproduce the huge scale of the IoT
Domain, which in real-life deployments is expected

to include thousands of physical IoT devices. As
highlighted, a simulation approach would have not
supported the in-depth type of evaluation we needed,
and these problems were solved with the introduction
of the Programmable Massive IoT Platform, shown in
grey, in Fig. 2.

The Distributed Software IoT Layer is the plat-
form’s component that implements a fully pro-
grammable IoT Domain, and supports the software
generation of data without relying on actual IoT phys-
ical devices. The Pluggable Networking / Adaptation
Layer provides the blocks that enable the actual
collection / adaptation of the above data, and their
transmission using various types of encoding and net-
work transport mechanisms to the Real-time Edge
Processing subsystem, which provides the important
Edge Data Collection and Edge Data Processing
functionalities. The interaction between these soft-
ware subsystems is based on the Network Transport
facet shown in the figure. These subsystems imple-
ment the bottom part of the Cloud-to-Thing scenario
shown in Fig. 1 – which is highlighted in Fig. 2
by the dashed rectangle that surrounds them. The
Distributed Monitoring and the Orchestrator subsys-
tems provide the functionalities to support both the
end-to-end automated deployment and the life-cycle
management of the software components belong-
ing to the IoT analytics system. They specifically
take care of the dynamic provisioning of computing
resources along the Cloud-to-Things path by imple-
menting a closed-loop system capable of orchestrat-
ing (activating, deactivating, integrating, scaling, etc.)
resources provided by heterogeneous computing infras-
tructures.

In our work, the above subsystems perform those
functionalities by automating the activation (on our
IoT testbed) of the resources and of the software
components utilised for the execution of various IoT
experiments. In particular, the Distributed Monitoring
collects metrics (KPIs) via the dynamic deployment
of bothData Collection andData Reporting elements.
The Orchestrator deals with the configuration and
deployment (on the testbed’s hardware resources) of
all the IoT software components: it is able to create
– on-the-fly – tailor-made instances of the other three
subsystems, purposely customised to inter-work and
support the setup of a particular IoT scenario to be
evaluated.
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Fig. 2 IoT analytics system
implementation overview

4.1 Programmable Massive IoT Platform

Our implementation of the Programmable Massive IoT
platform utilises the dynamic features and composable
software elements of Lattice monitoring framework
[7, 39].

The software elements of the IoT Platform use Lat-
tice as a foundation, and are used to implement the
system elements represented in Fig. 3. It allows the
platform to perform: i) the generation of data in the
Distributed Software IoT Layer; ii) the dynamic data
collection and pre-processing in the Adaptation Layer.

Distributed software IoT layer This supports the pro-
grammable definition of topologies of interconnected
software IoT entities characterised by a set size (i.e.,
the number of IoT entities) and by the rate at which
data is generated. A sensor-like IoT device can be pro-
grammed to produce custom defined measurements
based on a particular model and encoding. A sensor’s
measurement consists of a set of N attributes, where

each Attribute is defined as the combination of the
following fields: ID, Name, Type, Unit, and Value.

Those programmable IoT software sensors are then
attached to a Software Gateway that acts as a data
multiplexer. Internally it queues the measurements
generated by the sensors before they are distributed
over a Data Plane, and then collected by the Adap-
tation Layer. A full IoT topology can be configured
in such a way, as to distribute the elements across a
cluster of nodes, in order to scale up the number of
sensors.

Pluggable networking / adaptation layer This is imple-
mented via a set of Adaptors that receive measure-
ments from one or more Software Gateways from a
Data Plane. The Adaptors are programmed to perform
actions on specific types of measurements, and they
support the on-the-fly adaptation of the format (e.g.,
the type of encoding) of a received measurement. Each
Adaptor sends a measurement to the next stage of pro-
cessing via a particular implementation of theNetwork

Fig. 3 Platform and edge
subsystems implementation
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Transport. The Adaptation Layer includes different
types of Adaptors supporting various types of data
encoding and a number of Network Transports. Each
can be selected at run-time, according to the particular
interface exposed by the Edge Data Collection in the
Real-time Edge Processing.

4.2 Real-time Edge Processing

This subsystem is responsible for two main function-
alities: Edge Data Collection and Edge Data Process-
ing, and is shown in the top part of Fig. 3.

It is expected to be implemented via a microser-
vice application where, for instance, one microservice
could act as the Edge Data Collection, and one or
more microservices could implement the Edge Data
Processing backend. For this work, we followed this
design pattern, but only developed the Edge Data
Collection microservice, leaving the Real-time Edge
Processing empty as there is no processing to do. The
Edge Data Collection is accessible from the outside
world via a particular interface, and is responsible for
decoding the data received through the network.

Edge interfaces To support the evaluation of the var-
ious encodings and network transports, different ver-
sions of the microservice were developed, each with
a different type of interface. There are 2 encodings
used: JSON which is a text based representation, and
XDR which is a binary encoding. JSON has become
popular in recent times, as JavaScript’s influence of
software trends in the last decade caused JSON to
receive more attention than any other data interchange
format [35]. We chose XDR for the binary format,
as it has been a standard for a long time [34] (since
1995), and is known to be performant in many net-
work technologies (such as NFS). For the transports,
we used: i) request / response using REST, ii) data
streaming over UDP, which gives a connectionless
model, and iii) data streaming using Websocket,
which gives a UDP like socket interface over a TCP
stream. The HTML5 specification includes Websock-
ets, which represents a full-duplex, bidirectional com-
munications channel that operates through a single
socket over the Web [23], and provide a mechanism to
build scalable, real-time web applications.

The first interface selected is the commonly used
encoding of JSON over REST. This has become
the preferred method for synchronous interaction for

many services, as REST with JSON provides loose
coupling with a high degree of interoperability. The
initial implementation that was chosen was written in
Python, as many edge processing frameworks are writ-
ten in Python. A second implementation was written
in Java, as this is both common and has many libraries.

We then chose to implement Websocket, carry-
ing a JSON encoded payload, as the strong point
about Websocket is that it is more interoperable and
reliably works like a “socket” through firewalls. We
next changed the payload format to XDR, for binary
encoded data over Websocket. Finally we added a
UDP transport for streaming both JSON and XDR.

Table 1 shows how each microservice interface
implementation determines the choice of a particular
data encoding type (second column) and of a network
transport mechanism (third column). Furthermore, in
order to have a more complete evaluation that con-
sidered several frameworks and libraries, the usage
of different programming languages was also consid-
ered (i.e., Python and Java – fourth column). Note that
a Type label (first column), has also been assigned
to each microservice implementation in order to eas-
ily reference them in the experiments description. For
each of these encodings, the transport, and associated
implementation language, a performance evaluation is
presented in the experiments described in Section 6.

5 Testbed Setup

This section highlights the testbed setup and describes
the implementation of both the Orchestrator and Dis-
tributed Monitoring subsystems. It also presents the
testbed from the hardware perspective, presenting how

Table 1 Variants of the edge data collection microservice

Type Encoding Transport Language

json rest python JSON REST Python

json rest JSON REST Java

json ws python JSON WebSocket Python

json ws JSON WebSocket Java

xdr ws python XDR WebSocket Python

xdr ws XDR WebSocket Java

json udp JSON UDP Java

xdr udp XDR UDP Java
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the available resources were organised to support the
execution of various IoT experiments.

The Orchestrator plays a main role in the auto-
mated setup of the testbed’s components. This is
represented in Fig. 4 via the brown-dashed arrows that
interconnect the Orchestrator to the Real-time Edge
Processing, the Programmable Massive IoT Platform
and the Distributed Monitoring subsystems. The lat-
ter deals with the gathering and storage of relevant
metrics associated with the execution of those compo-
nents.

The same figure also shows an example of on-the-
fly deployment of those software subsystems on the
available testbed’s hardware resources. These, consist
of three logically separate clusters of servers hosted in
a Data Center at University College London (UCL),
and each offering a different type of resource capa-
bilities. The three logical clusters (see Table 2) are
inter-connected via a 1 Gbps Ethernet. The host oper-
ating system is Linux CentOS 7 with kernel version
3.10.

The instantiation of the above software subsys-
tems is dynamic and customised for each experiment,
but for simplicity their deployment is pre-mapped on
a specific logical partition of the testbed, based on
the type of available resources. Figure 4 shows that
due to the featured type of resources, the Clay Clus-
ter was a good candidate to host the Edge Domain’s
components, the Edu Cluster had enough resource
availability to act as a large-scale IoT Domain, and
the Gas Cluster was selected to host the components
of the Orchestrator and (some of) the Distributed

Table 2 Testbed’s Hardware features

Cluster Name CPU RAM

Clay 2x AMD Quad-Core Opteron
2347HE @1.9GHz

32GB

Gas 4x Intel Quad-Core Xeon E5520
@2.27GHz

32GB

Edu 4x Intel 12-Core Xeon E5-2650
v4 @2.20GHz

192GB

Monitoring subsystems. The implementation of these
subsystems are now described, highlighting how they
are involved in the automated setup and execution of
different IoT experiments.

5.1 Orchestrator

The Orchestrator subsystem here translates the high-
level definition of an IoT scenario into the set of
software components that need to be activated (on
the other subsystems). These components are config-
ured and deployed on-the-fly on the available testbed
resources, as it is represented in Fig. 4 by the brown-
dashed arrows. A prototype version of this Orchestra-
tor, developed in Python, is available at [16].

Configuration setup engine This receives a high-level
description of an IoT scenario and generates an Exper-
iment Deployment Template that specifies what enti-
ties, of the other testbed software subsystems, are
required for the setup. It then forwards the Experi-
ment Deployment Template to the Lifecycle Manager,

Fig. 4 Testbed deployment
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which will initiate the activation of the requested
components.

For instance, if the IoT scenario to be setup is data
encoded as XDR and streaming over UDP, the Con-
figuration Setup Engine will generate a template as
follows: the Real-time Edge Processing’s will be con-
figured to include the xdr udp microservice reported
in Table 1. The Programmable Massive IoT Platform
will be configured with an Adaptation Layer capable
of performing XDR re-encoding on the measurements
received by theDistributed Software IoT Layer, and to
stream them towards the Edge Domain over UDP.

Lifecycle manager This takes care of deploying
instances of the required software components on the
testbed’s resources, and receives as input an Experi-
ment Deployment Template generated by the Configu-
ration Setup Engine, as represented in Fig. 4. The cur-
rent implementation performs this task via the Python
Fabric library [11], interacting with the participating
testbed remote hosts over SSH.

The experiment deployment phase terminates when
all the required entities have successfully been acti-
vated. As soon as the execution of an experiment is
completed (e.g., a timeout has expired), the Lifecycle
Manager begins the decommission phase. The pre-
viously allocated software entities will be dismissed
(using an approach similar to the deployment phase),
and the hardware resources will be freed up and made
available for the execution of the next experiment.

5.2 Distributed Monitoring

This subsystem allows the collection of metrics from
an IoT experimentation, and is performed by theMon-
itoring Controller via the dynamic configuration and
deployment of instances of the Data Collection, Data
Reporting, and Probe entities on the relevant parts
of the testbed. The Monitoring Controller acts as an
interface toward the Orchestrator and provides the
functionalities to start / stop other monitoring com-
ponents on-demand. The Orchestrator utilises that
interface to trigger the dynamic deployment of a
given monitoring topology, based on the Experiment
Deployment Template generated by its Configuration
Setup Engine.

The current implementation of this subsystem reuses
some of software entities provided by Lattice [20].
Figure 4 shows an example of monitoring topology

that consists of two Data Collection entities running
respectively on the Edu Cluster and on the Clay Clus-
ter. These entities receive measurements from one or
more Probes, each gathering a relevant type of metric:
the amount of bytes received and the resources utilised
by the Edge Data Collection component, the CPU and
Memory usage of the edge hosts, etc.

The figure also shows that the Data Collection
entities send the above metrics values, over the net-
work, to a remote Data Reporting component running
on the Gas management cluster. This interaction is
highlighted by the solid teal coloured lines that inter-
connect all of those entities. The Data Collection acts
as an aggregation point and takes care of logging the
metric values, by writing them to a file or database
for later usage (such as cross-correlation, filtering,
visualisation, etc.).

6 Experimental Results

This section provides the results of several experi-
ments performed to evaluate the cost of various encod-
ing and transport mechanisms, utilised by edge appli-
cations and APIs, while dealing with the massive data
generated by thousands of IoT sensors. The results
are presented and analysed to show the impact design
choices can have on the utilisation of the available
edge resources.

For each experiment, an instance of the Edge Data
Collection microservice is selected from the API
Types presented in Table 1, and deployed onto a single
edge host. A bespoke instance of the Programmable
Massive IoT Platform, customised to generate mea-
surements at a given rate and a specified topology of
software sensors, is also activated on the testbed.

Each experiment has a lifespan, and throughout,
the sensor data is continuously generated by the IoT
Domain at a specified rate. The data stream is trans-
mitted over the network to the edge host, where
the sensors measurements are received and decoded
by the Edge Data Collection microservice. The data
encoding format and the transmission mechanism
utilised during an experiment depend on the API type
required for the evaluation of the Edge Data Collec-
tion. In these experiments a lifespan of 3600 seconds,
namely 60 minutes, was selected.

For a given experiment, the setup is characterised
by the following set of parameters:
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– Data Encoding: the type of data encoding for-
mat exchanged between the IoT and the Edge
Domains;

– Network Transport: the mechanism whereby the
IoT and the Edge Domains exchange data;

– Data Rate: the cumulative number of sensor mea-
surements sent every second;

– Software Gateways: the number of Software
Gateways within the IoT platform;

– Software Sensors: the total number of software
sensors attached to the Software Gateways;

– Attributes: the number of Attributes included
within each sensors’ measurement;

– Lifespan: the length of the experiment, in sec-
onds;

– Edge Data Collection: the Type of the API

The evaluations described here compare four met-
rics collected during each experiment by the Dis-
tributed Monitoring Subsystem, where:

– The first and second metrics are the number of
bytes received and the number of bytes sent by the
microservice application running on the edge;

– The third and fourth metrics are respectively the
percentage of CPU and the amount of Mem-
ory resources utilised on the edge host for the
execution of the same applications.

The results of the execution of the multiple exper-
iments have been grouped and presented in separate
subsections based on different combinations of the
parameters listed above. In each subsection, a graph
for each of the 4 metrics compares the results gathered
during the experiments, highlighting the performance
of the associated Edge Data Collection applications.

In order to determine any data loss or delay within
the experiments, the number of generated IoT mea-
surements is compared with the number of messages
received at the edge, during the 3600 second lifes-
pan. In general the experiments showed a high level
of delivery reliability, and data loss and delay was
not detected during any of the experiments, expect for
Experiment 1, which had a considerably lower data
collection.

6.1 Experiment 1 – JSON REST Python

This first experiment targeted the setup of an IoT ana-
lytics scenario where the Edge Data Collection had

features similar to the applications developed via the
most widely utilised microservices and FaaS frame-
works. Hence, this experiment was based on a Python
edge application that received JSON encoded data via
REST [29].

Experiment Setup:

Data Encoding JSON

Network Transport REST

Data Rate 10,000 messages/second

Software Gateways 10

Software Sensors 10,000

Attributes 1

Lifespan 3600 seconds

Edge Data Collection python json rest

python json rest was developed in Python 3 with Flask 1.1,
and using the Waitress 1.4 WSGI [42] with 4 worker threads

Experiment Results In this experiment, the transport
mechanism utilised by Edge Data Collection was
based on REST, which eliminates data loss during
the communication between the IoT Domain and the
Edge Domain as it uses HTTP, which is based on
TCP. The results highlighted something unexpected.
Each sensor generated 1 message per second, and
although the total number of measurements gener-
ated by the sensors during the experiment was =
10000 ∗ 3600 = 36 million, the total number of mea-
surements received and decoded by the Edge Data
Collection was considerably lower than that, at ≈
1 million.

When using REST, the interaction between the
IoT Domain and the Edge Domain is synchronous.
An IoT platform Adaptor takes a measurement off
its queue and performs a HTTP POST, by invoking
the designated endpoint of the Edge Data Collection,
and providing a JSON encoded measurement as the
request body. This synchronous invocation terminates
when a HTTP Accepted (Status Code 202) is returned
as reply.

However, if the rate at which the Adaptor sends the
above data is higher than the rate at which the Edge
Data Collection is able to decode them, then the mea-
surements will accumulate within the internal queue
of the Adaptor, even causing possible memory over-
flows. Our investigations confirmed this as the cause
of the mismatch between the generated measurements
and the ones actually received / decoded at the edge.
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This issue was caused by the python json rest imple-
mentation, which was not able to decode all the
received measurements in real-time, and therefore too
slow.

During the experiment’s time frame, each Adaptor
was expected to receive 3.6 million measurements
from the Software Gateway connected to it, which is
the total amount of generated measurements divided
by the number of deployed Software Gateways, i.e.,
36 million/10 = 3.6 million. At the end of the
experiment, the number of measurements received by
each Adaptor was 3.6 million, but the number sent to
the edge was only 100,000. This gives a total trans-
mission of 100, 000 ∗ 10 = 1 million measurements.
Therefore, when the experiment was completed after
3600 seconds, most of the generated measurements
were still queued in the Adaptation Layer of the IoT
Platform. They could not be sent to the edge due to:
i) the usage of a synchronous communication pattern
between the Adaptation Layer and the Edge Data Col-
lection; ii) the intrinsic low decoding throughput of the
particular implementation of the Edge Data Collection
used for this experiment.

Some preliminary conclusions of this experiment
show that the real-time decoding can only happen with
significantly increased computing power, by adding
to the number of instances of the python json rest
microservice running at the edge, or by dramatically
reducing the rate at which the measurements are gen-
erated by the IoT platform and transmitted to the edge.
It is this last approach that is selected for Experiment 2.

6.2 Experiment Set 2

In this set of experiments, the platform was configured
to generate measurements at a lower rate compared to
Experiment 1, to overcome the low throughput issues.

The rate was reduced by a factor 1/36 in order
to allow real-time data decoding. The performance
of the Python JSON/REST application was compared
with i) a Java-based implementation of JSON/REST
and ii) alternative Python implementations, based on
data streaming over WebSocket, using either XDR or
JSON.

Experiment Setup:

Data Encoding JSON and XDR

Network Transport REST and WebSocket

Data Rate 300 messages/second

Software Gateways 10

Software Sensors 10,000

Attributes 1

Lifespan 3600 seconds

Edge Data Collection json rest python, json ws python,

xdr ws python and json rest

json rest python, json ws python, xdr ws python were
developed in Python 3 and use the PyPIWebSockets library [30]
and standard Python libraries for JSON and XDR. json rest
was developed in Java 1.8 and is based on the Simple HTTP
framework [33] and the Resty JSON library [31]

Experiment results The performance of the different
types of Edge Data Collectionmicroservices is shown
in Fig. 5. There are 4 graphs, one for each of the 4
metrics. The graph Received Bytes shows that ≈ 600
MB was transmitted from the IoT Domain to the Edge
Domain by both the json rest python and the json rest
implementations. The graph Reply Bytes shows that
over 180 MB was transmitted as reply bytes for both
those implementations. This is due to the overhead asso-
ciated with the use of the REST messaging protocol.

The number of bytes received on the edge host
when either the json ws python or the xdr ws python
implementations were running, is smaller than the
bytes reported for the previous two cases which used
REST. It is ≈ 400 MB for json ws python and ≈ 200
MB for xdr ws python. Furthermore, for both of them
the number of reply bytes is negligible. This is due to
WebSocket relying on HTTP but using a data stream-
ing approach, as opposed to the request / reply model
of REST. XDR is a more efficient way of encoding the
measurements, with a total lower count of exchanged
bytes.

The graph CPU Usage shows that the highest con-
sumption of resources (throughout the whole exper-
iment) is associated to json rest python (≈ 100%).
Both json ws python and xdr ws python consumed less
CPU (≈ 25%), regardless of the data encoding type.
Although json rest was similar to json rest python, it
reported the lowest consumption of CPU resources
(less than 20%) among all the implementations. This
result is likely due to the usage of the Java runtime,
which outperformed all the Python based implemen-
tations.

As the Memory Usage graph shows, the json rest
used more Memory than all the Python implemen-
tations. The difference is quite significant, with ≈
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Fig. 5 Results of
experiment set 2

250 MB memory usage for the json rest implemen-
tation, and less than 20 MB the amount of memory
utilised by the other ones. This result is aligned with
the default Java runtime memory allocation policies.

These results clearly show that there is a sig-
nificant difference between the performance of
json rest python and the performance of both
json ws python and xdr ws python. This is mostly
related to the type of network transport and the
chosen data encoding. While there is a much lower
consumption of CPU resources for the Java json rest
implementation, compared to any of the Python

implementations, the memory consumption shows an
opposite trend.

To evaluate higher measurement throughput, the
next set of experiments considers additional imple-
mentations in Java.

6.3 Experiment Set 3

In this set of experiments, the behaviour of the Java
json rest microservice was compared with additional
Java implementations. These were based on APIs
receiving either XDR or JSON encoded data streamed
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over WebSocket or over UDP. The platform was con-
figured to generate measurements at the higher rate
utilised in Experiment 1, in order to test whether the
Java implementations were able to achieve a higher
data decoding throughput, compared to the previous
Python ones. During these experiments, the option
of sending the data with no names for the Attributes
within each measurement, was also evaluated.

Experiment Setup:

Data Encoding JSON and XDR

Network Transport REST, WebSocket and UDP

Data Rate 10,000 messages/second

Software Gateways 10

Software Sensors 10,000

Attributes 10

Lifespan 3600 seconds

Edge Data Collection json rest, json ws, xdr ws,

json udp and xdr udp

JSON data decoding is based on the Resty [31] library, and
XDR data decoding is performed via a custom implementa-
tion from [20]. The WebSocket network transport was built via
the event-driven TooTallNate library [37]. The UDP network
transport uses the standard java.net.DatagramSocket class

Experiment Results The results gathered show the
decoding throughput of the tested Java microservices
was higher than the throughput achieved by the Python
ones, and allowed performing real-time data decoding
at the higher selected rate, and also confirmed a match
between the number of generated measurements and
the number of measurements decoded at the edge.

The 4 graphs of Fig. 6 show the collected results,
which are consistent with the outcome of Experiment
Set 2, however, the total amount of data generated for
this experiment is larger than the previous one due to
the higher sensor data rate. The graph Received Bytes
again highlights that the largest amount of data was
transmitted when using json rest, and is slightly more
than 20 GB. That is followed by the other JSON based
implementations: json ws and json udp, which trans-
mit ≈ 17 GB. The XDR versions xdr ws and xdr udp
showed a considerably lower amount of received data,
due to the usage of a more efficient binary encoding,
with a value of ≈ 6 GB for these implementations.

For this group of experiments, additional tests that
involved configuring the sensors to generate measure-
ments that did not include the names of the Attributes,

were setup for both xdr ws and xdr udp. The related
results are labelled in all the graphs with the no names
suffix. As all the experiments only included a single
Attribute, the graph Received Bytes shows that a lower
amount of data was received by not sending the names,
≈ 5 GB versus ≈ 6 GB with names.

On the Reply bytes graph, bytes were sent from the
edge host towards the IoT Domain by the json rest
implementation (≈ 10 GB). This is due to the
REST request / reply messaging protocol on which it
is based. The streaming APIs replies were minimal
with WebSocket and zero with UDP.

The CPU usage graph shows that the highest CPU
consumption was associated to the json rest imple-
mentation (≈ 300%), consistent with Experiment
Set 2. This is followed by json ws (≈ 100%), and
json udp (≈ 60%). Both the xdr ws and the xdr udp
implementations performed similarly, and much better
than the others, with (≈ 30%), regardless of the mea-
surements including the Attribute names ( no names)
or not. TheMemory usage graph shows a much higher
utilisation associated to the json rest implementation
(≈ 600 MB). All the other microservices reported a
lower memory consumption in the range of 200− 300
MB.

The number of measurements was increased by 36
times over Experiment Set 2, and we observe that Java
is reliable and performant with this data rate.

6.4 Experiment Set 4

This set of experiments is an extension of Experiment
Set 3, with a higher number of Attributes being sent
within the generated measurements.

Experiment Setup:

Data Encoding JSON and XDR

Network Transport REST, WebSocket and UDP

Data Rate 10,000 messages/second

Software Gateways 10

Software Sensors 10,000

Attributes 10

Lifespan 3600 seconds

Edge Data Collection json rest, json ws, xdr ws,
json udp and xdr udp

Experiment Results The observations made for the
Experiment Set 3 can also be applied here (Fig. 7).
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Fig. 6 Results of
experiment set 3

This time the larger number of Attributes sent within
each measurement had a bigger impact of the total
amount of bytes received on the edge host. More
importantly, the final amount of Received Bytes
reported during the XDR no names tests (≈ 10 GB),
was about half of the amount reported for the other
XDR tests with the Attributes names (≈ 18 GB).
This shows how much of the full data stream can be
consumed by these names.

The graph CPU Usage shows an increase in the
required resources for all the implementations, in
comparison with the results of Experiment Set 3.

Furthermore, there is a lower consumption of CPU
resources associated to the xdr ws and the xdr udp
implementations during the execution of the
no names tests. This result is again due to the higher
number of Attributes (10 versus 1) encoded within
each measurement.

The graphMemory Usage highlights a much higher
usage of memory for both the json rest and json ws im-
plementations. On the other hand, the amount of mem-
ory required for the execution of the XDR implemen-
tations does not seem to be particularly affected by the
larger number of Attributes within the measurements.
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Fig. 7 Results of
experiment set 4

6.5 Discussion on the Experimental Results

Looking at the results from the previous four sets of
experiments, a common pattern in terms of behaviour
and performance of all the tested Edge Data Collec-
tion microservices can be observed.

Firstly, the measured decoding throughputwas con-
sistently higher for all the Java implementations when
compared to the Python ones. Moreover, the Java
microservices always required lower amounts of CPU
resources but higher amounts of memory. The results
also showed that the number of bytes exchanged by

the IoT Domain and the edge host was similar for
a given type of API, regardless of the programming
language, and frameworks / libraries, utilised for their
development.

During the experiments, the average value of each
metric is collected and calculated over 10 runs, and
shown in the graphs. Due to the large scale of the y-
axis, and the small variance of the statistical results,
the confidence intervals are tiny, and so they would
not be intelligible when shown in the graphs. The
average coefficient of variation for these metrics has
been calculated and show the following deviation: 3%
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for the amount of CPU, 5% for the amount of Mem-
ory resources and 0.1% for both the number of bytes
received and the number of bytes sent.

In general, the number of bytes exchanged by the
IoT Domain and the Edge Domain was impacted by
the type of network transport. Those based on REST
showed a higher volume of Received bytes, when com-
pared to the ones using either WebSocket or UDP. For
this metric, the difference between WebSocket and
UDP was negligible. The different behaviours are due
to the higher overhead of managing multiple HTTP
connections associated to REST, as opposed to the
usage of either a persistent WebSocket connection or
the connection-less “fire and forget” (unreliable) UDP
approach. An additional difference between REST
and the data streaming protocols is in the number of
generated Reply bytes. As REST uses HTTP, data is
always sent as reply; conversely, when streaming data
either over WebSocket or UDP, the number of Reply
bytes is negligible (or zero). This contributes to the
overall amount of bytes exchanged by the IoT Domain
and the Edge Domain.

The particular type of data encoding associated to
an API significantly affected the amount of Received
bytes metric. Self-describing data interchange formats
such as JSON, although having the benefit of being
human readable and widely supported by many appli-
cations over the Internet, resulted in a higher number
of generated bytes when compared to more efficient
binary formats like XDR. Moreover, optimising the
measurement data model by not including the attribute
names within the XDR encoded data, effectively
reduced the amount of Received bytes, especially
when the measurements contained 10 Attributes.

The values related to the CPU utilisation metric
followed a similar pattern. In particular, the REST
implementations required more CPU resources than
the WebSocket or UDP ones. This happens because
the REST microservices have to implement the HTTP
handling functionalities and the generation of the
HTTP replies. json rest is based on the Java simple-
framework [33] and it also allocates multiple threads.

Also note that WebSocket uses slightly more CPU
than UDP, when considering the same type of data
encoding, as it is built on HTTP.

The Java implementations use less CPU than the
Python ones, at a given measurement rate, as Python
is an interpreted language and is known for its flexi-
bility rather than performance. For each measurement

decoding operation, the overhead due to the inter-
pretation of the instructions needs to be factored in.
This gives a less efficient CPU utilisation and a lower
decoding throughput.

Predictably, and consistent with the results for the
amount of Received bytes, the usage of the JSON
data encoding format required more CPU resources
than XDR, regardless of the implementation chosen
for the network transport mechanism. The option of
not encoding the attribute names within the XDR data,
provided a significant lower CPU utilisation, particu-
larly when each measurement included 10 Attributes.

Finally, the Memory usage metric showed compa-
rable values for all the considered Java microservices,
with the only exception being the REST implementa-
tion (due to the usage of the multi-threaded simple-
framework). Moreover, these values were consistently
higher than those reported by the Python microser-
vices regardless of the implemented type of API. It
is commonly known that Java programs can, in gen-
eral, use more memory resources than Python ones.
This is due to the memory management and garbage
collection mechanisms, as well as to the allocation of
multiple threads.

From these results, Python may be more suitable
for memory-constrained scenarios combined with a
considerably lower decoding throughput; however, it
may not be a good choice when a massive number
of IoT data streams need to be processed in real-
time. Java will fit well in scenarios that require high
decoding throughput, allow the allocation of multiple
threads for concurrency, yet still require limited CPU
resources.

7 Conclusions

This paper presents a real-time IoT analytics scenario
where processing functions are placed at the edge
in order to minimise the end-to-end latency. When
microservice architectures are considered for the
design of those processing functions, it is paramount
to ensure adequate resourcing for their APIs in terms
of functionality and performance, especially when
there are a massive number of IoT devices.

It was shown how the choice of a given API imple-
mentation determines both the type of data encoding
and the type of network transport mechanisms for the
communication between the “things” and the edge;
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this, ultimately has a huge impact also on the edge
resource utilisation in terms of required computing
and networking capabilities.

The main research question targeted was an under-
standing of what of the above mechanisms have the
lowest traffic and least resource cost and impact on the
edge.

Various large-scale experiments, with thousands of
IoT software sensors, were performed on a testbed
hosting our Programmable Massive IoT Platform.
Several types of transmission mechanisms were tested
and evaluated against four main metrics: namely, the
number of bytes received and the number of bytes
sent by the edge microservices; the CPU usage and
Memory usage of the associated edge resources.

The results show how the traffic and the resource
consumption were clearly affected by the messaging
protocol, network technology, and data format, and
to some extent by the choice of the programming
language and frameworks utilised for the implementa-
tion.

In general, the use of self-describing formats such
as JSON has a significant impact on both the amount
of exchanged data and on the amount of resources
required to perform the data decoding operations. For
the network transport, the REST request / response
protocol showed a higher amount of exchanged data
compared to data streaming, as well as a much higher
usage of computational resources. A consequence of
this lower performance is that many more resources
are needed to do the same job.

The use of the binary encoded XDR consistently
returned the lowest amount of exchanged data, as well
as the lowest consumption of edge resources.

The microservices based on either WebSocket or
UDP transport protocols showed comparable perfor-
mance, and both always exchanged a lower amount
of data than the REST ones. The resource utilisation
was also lower than the REST microservices, with a
slightly higher consumption of CPU associated to the
WebSocket implementation.

A binary format like XDR represents the best
choice for the data interchange format between the
IoT Domain and the Edge Domain, as it allows both
the transmission of a smaller amount of data and a
lower resource utilisation than JSON. Either the Web-
Socket or the UDP network transport protocols offer

comparable performance but, as WebSocket provides
reliable data transmission and is widely supported by
many Web Applications, it may be the preferred net-
work transport solution for the design of the Edge Data
Collection.

All the Python implementations showed lower
memory consumption but higher CPU utilisation com-
pared to the Java ones. They also provided a lower
decoding throughput due to the intrinsic interpreted
nature of Python and to the global locking mech-
anisms that prevented the concurrent execution of
multiple CPU-bound threads. As such, Python is a
good choice for memory-constrained scenarios when
smaller amounts of data do not need to be processed
in real-time. On the other hand, Java, demonstrat-
ing high-throughput and real-time data handling, plus
multi-threaded capabilities, fits well with the massive
real-time IoT data processing scenario presented in
this paper.

As further work, we plan to evaluate the through-
put and cost of using MQTT, which uses a pub-
lish/subscribe messaging protocol and a broker for
queueing and distribution. Many pub/sub brokers have
difficulty sustaining a high throughput of messages
when there are many topics [5], so this may have a
big impact on the total message delivery capability.
We also plan to extend the current implementation of
the Real-time Edge Processing by developing the data
processing backend.

We target a distributed system where data process-
ing functions can dynamically be orchestrated, and the
data generated by the IoT devices can be off-loaded
towards the edge or the cloud according to applica-
tion requirements. An in-depth analysis based on the
execution of multiple parallel instances of both the
Edge Data Collection and the Edge Data Process-
ing applications will also be undertaken, providing
an assessment of how horizontal scaling can increase
the overall processing throughput and performance,
and how this affects the utilisation of the distributed
edge resources. More orchestration algorithms that
take those aspects into account might be developed as
we further scale up and optimise the Programmable
Massive IoT Platform.
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8. Dizdarević, J., Carpio, F., Jukan, A., Masip-Bruin, X.: A
survey of communication protocols for internet of things
and related challenges of fog and cloud computing integra-
tion. ACM comput. Surv 51(6) (2019)

9. Emeakaroha, V., Fatema, K., Healy, P., Morrison, J.:
Towards a generic cloud-based sensor data management
platform: a survey and conceptual architecture. In: SEN-
SORCOMM 2014 - 8th International Conference on Sensor
Technologies and Applications, pp. 88–95 (2014)

10. Emeakaroha, V.C., Healy, P., Fatema, K., Morrison, J.P.:
Analysis of Data Interchange Formats for Interoperable

and Efficient Data Communication in Clouds. In: 2013
IEEE/ACM 6th International Conference on Utility and
Cloud Computing, pp. 393–398 (2013)

11. Fabric: Pythonic remote execution. http://www.fabfile.org
12. Google: Protocol Buffers. https://developers.google.com/

protocol-buffers
13. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Inter-

net of Things (IoT): A vision, architectural elements, and
future directions. Futur. Gener. Comput. Syst. 29(7), 1645–
1660 (2013)

14. Hong, X.J., Sik Yang, H., Kim, Y.H.: Performance analy-
sis of RESTful API and RabbitMQ for microservice web
application. In: 2018 International Conference on Informa-
tion and Communication Technology Convergence (ICTC),
pp. 257–259 (2018)

15. Hosseinzadeh, M., Masdari, M., Rahmani, A.M., Moham-
madi, M., Aldalwie, A.H.M., Majeed, M.K., Karim, S.H.T.:
Improved butterfly optimization algorithm for data place-
ment and scheduling in edge computing environments.
Journal of Grid Computing 19(2), 14 (2021)

16. IoT Experiment Orchestrator. https://github.com/francesco-
tusa/iot-orchestrator

17. Javed, A., Robert, J., Heljanko, K., Främling, K.: IoTEF:
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