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Dear Editor,  

                     Thank you for your comments on our previously submitted version of the 

manuscript (SNB-D-20-05236). As per your comments and suggestions, we have thoroughly 

reformulated the manuscript and included the data (wherever applicable).  

We would like to resubmit for your consideration the ‘reformulated’ manuscript entitled “A  

benzimidazole-based new fluorogenic differential/sequential chemosensor for Cu2+, Zn2+, CN-, 

P2O7
4-, DNA, its live-cell imaging and pyrosequencing applications” for publication as a full 

paper.  

Comment 1: No detailed comparison with the performance of known sensors/probes (mostly 

optical) for the determination of the various analytes (ions, DNA) is provided. For instance, 

insert Tables in the Suppl. Information and discuss them in the main text. 

Response: We have now showcased 12 literature reported sequential chemosensor systems in a 

Table (S1, Supplementary Information) with the following details that include 

signalling/fluorophore units, analyte receptor units, the medium of access, sensing capability in 

terms of analyte binding constant and detection limit values and method, mode and mechanism. 

Also, we have compared with several ‘turn-on’ Cu2+-sensors in appropriate places and 

introduced a new section (Comparison of sequential sensing performance) in the main text and 

compared with our sequential sensor system (DFB) in detail.  

Comment 2: - While the spectroscopic characterization of the probe-metal interaction is 

thorough, the analytical characterization is far from complete (as per SNB Aims & Scope). 

Uncertainty values must be shown in calibration plots and other relevant datasets to allow proper 

calculation of the limit of detection and other features (the linearity of the dose-response curves 

at low analyte concentrations is poor). Parameters such as limit of detection, dynamic range, 

interferences, repeatability, reproducibility, etc. (where applicable) have not been determined for 

some species. 

Response: We appreciate the Editor for these valuable suggestions. Accordingly, we have now 

synthesized the chemosensor (DFB) derived Cu(II) and Zn(II) complexes (DFB-Cu2+ and DFB-

Zn2+) and fully characterized them by both analytical and spectroscopic methods (please see the 

experimental section in the main text) including elemental analyses, IR and HRMS techniques 
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(Figs. S4 and S5). Also, the binding constants and limiting of detection (LOD) values of the 

sensor compounds were also recalculated and included in the text with standard deviation 

(errors) and discussed.  

Comment-3: - The sensor has not been applied to the analysis of relevant real samples (e.g. 

plasma, waters). This is a key issue for SNB manuscripts (see 

https://www.journals.elsevier.com/sensors-and-actuators-bchemical). Therefore, its value cannot 

be assessed. 

Response: We are grateful to the Editor for this valuable comment. Accordingly, we have 

harnessed the sensor DFB as a sequential fluorescent probe to detect Cu2+, Zn2+ and P2O7
4- ions 

in human cervical (HeLa) and breast (MCF7 and MDA-MB 231 (metastatic)) cancer cells. 

Moreover, we have explored the PPi recognition capability of DFB-Zn2+ in the polymerase-

chain reaction (PCR) product mixture where PPi is one of the major by-products during 

amplification of DNA. These critical application sections are also included in the current version 

of Manuscript and Supplementary Information.   

Considering these results altogether, we believe that the current version of this manuscript meets 

the standard of “Sensors and Actuators: B Chemical” journal. We also believe that the work is 

interdisciplinary, within topics of current interest in Inorganic, Analytical Chemistry and 

Biology, Genetics, and we think it fulfils the conditions to be considered for publication in 

“Sensors and Actuators: B Chemical” journal. 

We thank you for your kind consideration. 

Sincerely,  

Sellamuthu Anbu 

Anup Paul 

Kalpana Surendranath 

Nadeen Sheikh Solaiman 

Armando J. L. Pombeiro 
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Research Highlights 

 

 A benzimidazole-based chemosensor (DFB) shows “off-on” responses upon 

differential detection of Cu2+ (LOD = 24 nM) and Zn2+ (LOD = 2.18 µM). 

 

 The DFB derived Cu2+, and Zn2+ complexes serve as efficient secondary sensors 

toward CN-, PPi and DNA in an aqueous medium. 

 

 DFB acts as a sequential fluorescent probe to detect Cu2+, Zn2+ and PPi in living 

cancer cells.  

 

 DFB-Zn2+ can detect the PPi in the PCR amplified DNA products. 

   

 

 

Research Highlights
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________________________________________________________________________ 

Abstract: Differential chemosensors have emerged as next-generation systems due to 

their simplicity and favourable responsive properties to produce different signals upon 

selective binding of various analytes simultaneously. Nevertheless, given their inadequate 

fluorescence response and laborious synthetic procedures, only a few differential 

chemosensors have been developed so far. In this work, we have employed a single pot 

synthesis strategy to establish a new benzimidazole-based Schiff base type fluorogenic 

chemosensor (DFB) which differentially detects Cu2+ (detection limit (LOD) = 24.4 ± 0.5 

nM) and Zn2+ (LOD = 2.18 ± 0.1 nM) through fluorescence “off-on” manner over the 

library of other metal cations in an aqueous medium. The DFB-derived ‘in situ’ 

complexes DFB-Cu2+ and DFB-Zn2+ showed fluorescence revival “on-off” responses 

toward cyanide (CN-) and bio-relevant pyrophosphate (P2O7
4--PPi) ions with a 

significantly low LOD of 9.43 ± 0.2 and 2.9 ± 0.1 nM, respectively, in water. We have 

demonstrated the phosphate group-specific binding capability of DFB-Zn2+, by testing it 
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with both ssDNA and dsDNA samples which displayed fluorescence “turn-off” response 

(LOD ⁓10-7 M), similar to the PPi binding in an aqueous medium, indicating that it 

interacts explicitly with the phosphate backbone of DNA. We have also harnessed the 

DFB as a sequential fluorescent probe to detect Cu2+, Zn2+, CN- and P2O7
4- ions in human 

cervical (HeLa) and breast (MCF-7 and MDA-MB-231 (aggressive and invasive)) cancer 

cell lines. Moreover, we have explored the PPi recognition capability of DFB-Zn2+ in the 

polymerase-chain-reaction (PCR) products where PPi is one of the primary by-products 

during amplification of DNA. 

Keywords: Benzimidazole, Differential Cu2+ and Zn2+ sensor, Cyanide and PPi-sensor, 

Metastatic cells, Metal-based DNA-sensor, PPi-detection in PCR products.  

________________________________________________________________________ 
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1. Introduction  

Designing and development of chemosensors for bio-relevant metal cations are an 

emerging area of research in supramolecular chemistry [1]. This offers a lot of platforms 

to construct suitable materials for assessment of metal ion levels which influence diverse 

biological and environmental processes [2]. Amongst the several reported chemosensors, 

those based on the fluorescent recognition of metal ions have attracted considerable 

interest due to their simplicity, specificity, high sensitivity, and capability to monitor and 

convert the metal recognising event into the signals rapidly [1-5]. Notably, more efforts 

have been put forward on developing novel fluorogenic chemosensors for the detection of 

Cu2+ and Zn2+ ions since these metal ions are highly bio-relevant and involved in a range 

of environmental and biological processes [6-9].  

Cu2+ is one of the rifest transition metal ions present in the human body, responsible for 

diverse critical roles in various physiological reactions and energy transport processes 

[10]. The disruption in copper homeostasis is directly linked with neuron activation and 

severe neurodegenerative diseases like Alzheimer’s, Wilson and Menkes diseases [11, 

12]. For instance, Cu2+ acts as the active centre and co-factor for various metalloenzymes 

including superoxide dismutase, cytochrome oxidase and tyrosinase and their activities 

[13, 14]. Copper is also an essential micronutrient for plants, and it is needed for ensuring 

several central plant cellular processes, and excessive Cu2+ in the soil is associated with 

several deposition diseases, including chlorosis [15]. 

On the other hand, Zn2+ is another central metal ion which regulates relevant cellular 

functions, and it is present in more than 3000 putative human proteins [16, 17]. In the 

human brain, high concentrations (micromolar level) of chelatable intracellular Zn2+ ions 

are stored in the hippocampus, regulating the neuron communications to improve 

memory and learning capabilities [17, 18]. A large variety of zinc-based compounds have 

been explored as insulin-mimetic [19], tumour photosensitizers in photodynamic therapy 
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[20], biomedical imaging [21], radiation-induced damage protective [22], anticancer [23] 

and antiviral therapeutic (via nucleic acid interaction) agents [24]. Therefore, the 

detection and quantification of Cu2+ and Zn2+ levels in biological and environmental 

scenarios using fluorogenic chemosensors are of recognized significance.    

Among the different anions recognitions of interest, that of CN− ion in real and 

environmental samples has received increasingly great attention due to its lethal toxicity 

and extensive applications in metallurgy, plastics, fibres, dyes, water treatment and 

pharmaceuticals [25-29].  In recent years, several chemosensor systems for cyanide ion 

[25] detection have been developed which work via different sensing mechanistic modes, 

such as H-bonding [30], complexation [31], C-C (double) bond activation by nucleophilic 

addition [32], metal displacement from preassembled sensor systems [33-35] and so on. 

Among the analytical techniques, such as atomic absorption spectral [36], 

electrochemical [37] and colourimetric methods [35, 37, 39], the fluorescence detection 

of CN- ion by Cu2+ based probes through metal displacement approach has many 

advantages including secure and fast response, high sensitivity, economical and 

accessibility in aqueous medium [33, 40, 41].   

The inorganic pyrophosphate (P2O7
4--PPi) is a by-product of DNA or RNA 

polymerization reactions, and this is the key for diverse metabolic processes including 

energy storage and transport, regulation of ion-channels, intercellular signalling 

arbitration, enzymatic including phosphorylation reactions and DNA-replication in the 

living systems [42-48]. The detection of PPi levels in synovial fluid and urine allows 

quantifying the calcium in the form of crystalline calcium pyrophosphate dehydrate, 

responsible for several bone joints diseases including chondrocalcinosis or pseudogout in 

the human body [49]. Furthermore, PPi is also essential for the sucrose synthase activity 

in the plants to develop starch stored seeds, and tubers through ADP-glucose PPase 

catalyzed the reaction [50]. The PPi levels in the cells can offer precise information on 
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DNA replication processes, and this can be used as a cancer biomarker since it is released 

during the telomerase elongation process which takes place in almost all human tumours 

but not in adjacent healthy tissues [51]. Thus, development of new chemosensors for 

phosphates opens up the opportunities to identify novel and promising diagnostic 

reagents for the genetic diseases and the monitoring of intracellular processes [52, 53].  

Therefore, design and developing of a new generation chemosensor systems with 

selective and sensitive signalling units (fluorophores) for differential detection of Cu2+ 

and Zn2+, as well as secondary recognition of anions (e.g., CN- and PPi) by “off-on” 

manner, are a promising area that advances the chemosensor research into a next level. 

However, a single chemosensor which discriminatively recognizes the specific metal ions 

from others in “off-on” fashion is limited in the literature [3, 6-9, 54, 55]. Recently, we 

have also devoted to developing fluorogenic differential sensors for rapid recognition of 

Cu2+ and Zn2+ ions and the consequential detection of S2- and PPi anions [7, 8]. Very 

recently, we have arrayed a range of chemosensors (totally 150) developed over a decade 

from 2010 to 2019 including metal-based and sequential sensors that selectively detect 

PPi in both environmental and biological scenarios [56].   

Notably, the development of a fluorescent chemosensor for probing two different metal 

ions and significant detection of anions as well as biomolecules such as DNA in the 

aqueous medium through a single technique via exploring distinct fluorescence signals 

for the different analyte is challenging, and no such sensors have been reported so far. In 

the context of the above objectives, for the first time, we are reporting a benzimidazole-

based Schiff base type fluorogenic chemosensor (DFB) for the differential detection of 

Cu2+ and Zn2+ ions by an “off-on” manner and its secondary sensor applications towards 

cyanide, pyrophosphate ions and DNA molecules. We have demonstrated the use of DFB 

as a sequential bioimaging probe for concomitant recognition of Cu2+, Zn2+ and PPi in 
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cultured human cervical (HeLa) and breast cancer (MCF-7 and MDA-MB 231 (invasive 

and aggressive))  cell lines and PCR amplified DNA product mixtures.     

2. Results and Discussion  
2.1. Synthesis and characteristic aspects of chemosensor DFB 

We have employed a single pot strategy to develop a new fluorogenic chemosensor 

(DFB) (Scheme 1) by reacting (1H-benzo[d]imidazol-2-yl) ethanamine (2) and 2,6-

diformyl-4-methyl phenol (1) in ethanol at 40 °C (See experimental details in Supporting 

Information, SI).  This simple Schiff base type DFB acts as an excellent sensor for Cu2+ 

and Zn2+ ions, and its metal complexes serve as secondary probes for CN-, PPi and DNA 

in aqueous conditions. The molecular structures of the chemosensor DFB and its Cu2+ 

and Zn2+ complexes (DFB-Cu2+ and DFB-Zn2+) are proved based on spectroscopic (FT-

IR, 1H, 13C NMR) and ESI-MS data, and elemental analyses (Figs S1-S5). A highly 

symmetrical 1H NMR spectrum was obtained for the chemosensor DFB (Fig. S1), in 

which two aromatics and three aliphatic sets of proton signals were consistent with its 

molecular structure. Other essential signals corresponding to the phenolic OH, 

benzimidazole NH and azomethine CH=N protons appeared at 14.01, 12.32 and 8.63 

ppm, respectively, further confirming the formation of the Schiff base type compound 

DFB with N4O donors for metal binding. To prove the carbon skeleton of the DFB, we 

have recorded the 13C NMR spectrum (Fig. S2) in DMSO-d6. Twelve signals, including 

eight for aromatic carbons, three resonances for aliphatic carbons and an intense signal at 

163 ppm assigned to the azomethine carbon (C=N), were observed. An acetonitrile 

solution of DFB showed an intense (ESI-MS) peak at m/z = 451.44 (Fig. S3), which 

corresponds to the formation of [DFB+H+]+. A strong IR band observed at 1635 cm–1, 

characteristic of azomethine (C=N) stretching vibration, indicates the formation of a 

Schiff base between the dialdehyde and benzimidazole ethylamine. Notably, this critical 

band was significantly shifted to a higher wavenumber (1642 and 1641 cm–1) upon 
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forming Cu2+ and Zn2+ complexes, suggesting that the C=N nitrogens of DFB are 

involved in metal coordination. Moreover, both DFB-Cu2+ and DFB-Zn2+ display four 

bands in the UV region (260–550 nm) ascribed to the intra-ligand π–π* transitions within 

the phenolate oxygen and azomethine nitrogens of DFB in a CH3CN/(50 mM) HEPES 

buffer at pH 7.4. The sensor-derived copper(II) complex DFB-Cu2+ (Fig. S4) displays 

HRMS peaks at m/z = 296.03, 629.09 and 647.01, consistent with the  

[Cu2(DFB)(OH)]2+, [Cu2(DFB)(OH)(Cl)]+ and [Cu2(DFB)(H2O)(OH)(Cl)]+ species, 

respectively, confirming the formation of a 1:2 complex. On the other hand, the complex 

DFB-Zn2+ shows a major peak (Fig. S5) at m/z = 515.14, attributed to the existence of 

[Zn(DFB)]+ species, which confirms the 1:1 (DFB:Zn2+) complex formation. All these 

data reveal the formation of the proposed Schiff base type chemosensor DFB and its Cu2+ 

and Zn2+ complexes (DFB-Cu2+ and DFB-Zn2+) for sensor studies.  

 

 

Scheme 1 Synthesis of chemosensor DFB 

 

2.2. Metal ion sensing studies 

We have used 1H-NMR, absorption and fluorescence spectroscopic titration strategies 

(Fig. 1) to monitor the differential Cu2+ and Zn2+ detection capability of DFB in 

CH3CN/50 mM HEPES buffer at pH = 7.4. DFB (5 μM) showed four prominent 

absorption bands at ca. 273, 280, 360 and 440 nm. Under a similar set of conditions, 

DFB displayed a weak fluorescence emission band ca. at 515 nm upon excitation at 380 
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nm. To confirm the dual selectivity and distinct sensitivity of the DFB toward Cu2+ and 

Zn2+ ions, we have titrated it with various metal ions such as Hg2+, Cd2+, Ni2+, Co2+, Fe2+, 

Mn2+, Ca2+, Fe3+, Mg2+, K+ and Na+. Interestingly, the DFB showed no significant change 

in its initial absorption spectrum (Fig. 1A) upon addition of the metal ions as mentioned 

above except Cu2+ and Zn2+, which elicited remarkable fluorescence quenching (9-fold) 

and significant fluorescence enhancement (4-fold) responses, respectively (Fig. 1B).  

 

 

Fig. 1. Absorption (A) and fluorescence (ex = 380 and em = 515 nm) (B) spectral 

titrations of chemosensor DFB (5 μM) with different metal cations in CH3CN/50 mM 

HEPES buffer medium at pH = 7.4.  

 

The initial absorption spectrum of DFB was dramatically changed upon incremental 

addition of Cu2+ (0−25 M) or Zn2+ (0−15 M).  The absorption maximum at ca. 440 nm 

remarkably decreased along with a blue shift of ca. ~18 nm. This Stark blue shift is 

ascribed to the participation of the phenolate O-atom, part of the azomethine and 

benzimidazole N-atoms, in metal coordination [57, 58]. In both the Cu2+ and Zn2+ 

titration profiles, the absorption maxima at ca. 360 nm decreased along with the 

appearance of a new absorption band at ca. 308 nm, attributed to charge-transfer in 

complexes DFB-Cu2+ and DFB-Zn2+. Four well distinct isosbestic points observed at ca. 

284, 332, 369 and 434 nm for DFB-Cu2+ and three points at ca. 284, 369 and 424 nm for 
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DFB-Zn2+ agree with the existence of an equilibrium between chemosensor DFB and its 

appropriate metal complex DFB–M2+ (M2+ = Cu2+, Zn2+), in solution.  The extent of Cu2+ 

or Zn2+ binding propensity (Ka) of DFB was estimated as 1.67 × 1010 M-2 and 1.5 × 104 

M-1 from the absorptions spectral titration profiles (Fig. 2 insets), indicating the formation 

of 1:2 and 1:1  Cu2+ and Zn2+ complexes of DFB, respectively  (Scheme 2).  

 

 

Fig. 2. Absorption spectral titration profiles of DFB (5 μM) with Cu2+ (0−25 M) (A) 

and Zn2+ (0−15 M) (B) ions in CH3CN/50 mM HEPES buffer at pH 7.4 (Insets show the 

linear Benesi-Hildebrand plots). 

 

The moderate fluorescence emission at ca. 515 nm (Quantum yield, Φf = 0.12) of DFB is 

likely due to the presence of the ethyl spacer group which partially hampers the 

photoinduced electron transfer (PET) process between the benzimidazole fluorophore 

units and 2,6-diformyl-4-methyl phenol. Fig. 3A shows the change in the initial 

fluorescence intensity of DFB upon the gradual addition of an aqueous Cu2+ solution 

(0−20 M). A small reduction of the initial emission intensity and significant redshift 

(530 nm) by ca. 15 nm was observed until the addition of an equivalent of Cu2+ ions. 

This initial little fluorescence “turn-off” found upon titration of 0-1 equivalent of Cu2+ 

ions is attributed to fractional mitigation of quenching as one binding compartment of 

DFB is occupied, leaving the other binding compartment to continue the photoinduced 
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electron transfer (PET) process (Scheme 2) [59]. A subsequent gradual treatment up to 

two equivalents of Cu2+ solution induces a strong quenching (~8.8 fold decrease) of the 

emission intensity at ca. 530 nm with a slight blue shift ca. 3 nm. Notably, the dramatic 

quenching of the fluorescence at ca. 530 nm reaches a plateau at ca. 2.4 equivalents (~12 

M) of Cu2+. The apparent Cu2+ association constant (Ka) was determined as 1.63 × 1010 

M-2 by plotting [(F0-Fmin)/(F0−F)] against 1/[Cu2+]2 (Fig. S6A). The significant redshift 

and concomitant quenching of emission intensity of DFB are endorsed to the reverse 

photoinduced electron transfer from the 4-methyl phenyl moiety to the phenolic-O, 

azomethine and benzimidazole-N atoms attributed to the decrease in electron density 

upon Cu2+ ion complexation [57, 58, 60, 61].  

 

 

Fig. 3. Fluorescence spectral titration profiles of DFB (5 μM) versus Cu2+ (A) and Zn2+ 

(B) (0−25 μM), in CH3CN / (50 mM) HEPES buffer medium at pH = 7.4. (ex = 380 and 

em = 515 nm). 

On the other hand, the fluorescence emission of DFB at ca. 515 nm significantly 

increased (~1.8 fold increase) with a blue shift of ~10 nm up to ca. 505 nm, after the 

addition of small aliquots (~1.0 equivalent) of Zn2+ ions (Fig. 3B). This remarkable 

fluorescence enhancement (Φf = 0.21) with a significant blue shift of DFB-Zn2+ is 

attributed to the excimer interaction between benzimidazole units (Scheme 2) and the 
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diamagnetic Zn2+ ion which does not promote any electron- or energy-transition 

mechanisms for the deactivation of the excited state [62, 63] and inhibition of PET 

mechanism [57, 58] between donors and the Zn2+ ion. Moreover, the Zn2+ binding 

constant (Ka) of DFB was determined as 2.0 × 104 M-1 from the fluorescence titration 

profile for the plot of [1/(F−F0)] against 1/[Zn2+] (Fig. S6B) using the modified linear 

Benesi–Hildebrand expression [60, 61] 

To further confirm the binding mode and ratio of the chemosensor with Zn2+ (a 

diamagnetic metal ion), we have used the 1H NMR titration method to monitor the 

change in the initial 1H-NMR spectrum of chemosensor DFB upon gradual addition of 

Zn2+ in DMSO-d6 (Fig. S7). Aliquots of Zn2+ in D2O (0.5, 1.0, 1.5 and 2.0 equivalents) 

were added to the DMSO-d6 solution of DFB (5 mM) and the 1H-NMR spectrum was 

recorded after each addition. The initial 1H-NMR spectrum of DFB gradually altered 

upon incremental addition of Zn2+. In particular, the single broad resonance observed at δ 

14.01 assigned to the phenolic OH disappeared after addition of 1 equivalent of Zn2+ 

indicating the DFB deprotonation upon metal binding. The other signals at 12.32 and 

8.63 ppm corresponding to the metal ion binding site that comprises the benzimidazole 

NH and azomethine (CH=N) protons (δ in ppm), respectively, shifted to downfield 

considerably (~0.3−0.5 ppm), suggesting that both donors were involved without 

deprotonation. The other signals due to aromatic and aliphatic protons become broadened 

with a little downfield shift after addition of an equivalent of Zn2+, and this remains 

constant upon subsequent additions of (up to two equivalents) of Zn2+ ions. This confirms 

the participation of the N4O donor site of chemosensor DFB for Zn2+ binding and the 

formation of the 1:1 stoichiometry complex, DFB-Zn2+. Moreover, the stoichiometry 

plots (Fig. S8) based on the fluorescence spectral titration profiles also confirm the 

formation of 1:2 and 1:1 ratios of DFB-Cu2+ and DFB-Zn2+, respectively.  
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Furthermore, to confirm the distinct selectivity and sensitivity of DFB towards Cu2+ and 

Zn2+, the interference of other metal has been examined by fluorescence titration with 

different metal ions such as Hg2+, Cd2+, Ni2+, Co2+, Fe2+, Mn2+, Ca2+, Fe3+, Mg2+, K+, and 

Na+ ions (Figs. S9A and S9B). None of the metal ions elicits any considerable quenching 

response (green bars) except Cu2+ which induces efficient quenching of initial 

fluorescence of DFB (red bars). Notably, in the presence of Cu2+ ions, the fluorescence 

band at ca. 530 nm of DFB was significantly quenched even in the presence of Zn2+ ions 

revealing that the chemosensor DFB has a highly selective and sensitive binding 

capability towards Cu2+ over the other competing metal cations. This is attributed to the 

paramagnetic nature of Cu2+ that is capable of quenching the fluorescence emission of 

DFB through electronic or energy transformation during DFB-Cu2+ formation [7]. 

Besides, upon addition of one equivalent of the sodium salt of EDTA solution to the in 

situ prepared DFB-Zn2+ complex, the fluorescence intensity was almost reversed after 1 

h of incubation (Fig. S9C). This revival of fluorescence suggests that DFB behaves as a 

reversible sensor system.   

Moreover, based on the fluorescence spectral titration profiles of DFB with Cu2+ and 

Zn2+, we have estimated the detection limits of DFB towards Cu2+ and Zn2+ as 24.4 ± 0.5 

nM and 2.18 ± 0.1 nM, respectively (Figs. S10A and S10B). These are comparable to the 

values reported for other chemosensors for Cu2+ and Zn2+ ions [64-69] and adequate to 

recognize Cu2+ and Zn2+ ions in biological systems [70, 71].  

2.3. Anion sensing studies 

A single chemosensor system that is capable of recognising and showing distinct signals 

upon binding various analytes at a time is increasingly attractive [72]. In particular, 

chemosensor derived metal-based systems are relevant and useful for anion detection, 

given the possibility of exhibiting an improved water solubility and the availability of 

vacant coordination sites on metal ions [1].  Thus, the secondary anion sensing 
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capabilities of the in situ prepared Cu2+ and Zn2+ complexes (DFB-Cu2+ and DFB-Zn2+) 

were investigated by both absorption and fluorescence spectral titration techniques. 

Initially, the selectivity and sensitivity of DFB-Cu2+ toward a range of anions and 

phosphates including CN–, PPi, Pi,  ATP,  AMP, ADP, I–, Br–, Cl–, F–, CH3COO–, CO3
2–, 

HCO3
–, N3

3– and SO4
2– were investigated by both absorption and fluorescence spectral 

titration methods in CH3CN/50 mM HEPES buffer at pH = 7.4. 

 

 

Scheme 2 Possible detection modes of chemosensor DFB.  

 

DFB-Cu2+ displays a broad band centred at ca. 376 nm that comprises three humps at ca. 

360, 385 and 405 nm characteristic of benzimidazole-based Schiff base compounds [73]. 

As shown in Fig. S11, the initial absorption spectrum of the dicopper(II) complex (DFB-

Cu2+) drastically changed after addition of sodium salt of cyanide (CN-) ion, whereas any 

other of the above-listed anions induced significant changes. Notably, upon adding five 

equivalents of CN- to the solution of DFB-Cu2+, the absorption band at ca. 376 nm was 

significantly decreased and largely shifted to longer wavelength to 435 nm. The CN- ion 
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binding constant of DFB-Cu2+ was estimated as (Ka = 9.9 × 1010 M-2) based on the 

changes being monitored in this absorption spectral band at 435 nm.  

 

Fig. 4. (A) The fluorescence spectral titration profiles of DFB-Cu2+ (5 μM) versus CN- 

(0−25 μM) in CH3CN / (50 mM) HEPES buffer medium at pH = 7.4. (ex = 380 and em 

= 535 nm). (B) Plot of change in the fluorescence emission of DFB-Cu2+ at 535 nm as 

the function of CN- concentration.  

 

Under a similar set of conditions, in the presence of the anions mentioned above, the 

DFB-Cu2+ (5 µM) showed no fluorescence emission enhancement except with CN- ion 

which induced a dramatic enhancement (Fig. S12). Furthermore, competitive titration 

experiments of DFB-Cu2+ versus different anions along with and without the presence of 

CN- ions also confirm that the sensor can selectively recognize CN- ion in a highly 

competitive manner. Interestingly, the initial non-fluorescent condition of DFB-Cu2+ 

changed dramatically into a highly intense fluorescence band at 535 nm upon increasing 

addition of CN- ions (Fig. 4A). This almost complete revival of the fluorescence emission 

along with the sigmoidal data points (Fig. 4B) suggest that the Cu2+ ions are 

consecutively sequestered (dicopper(II) DFB-Cu2+ + 2CN- => Cu(CN)2 + 

monocopper(II) DFB-Cu2+; monocopper(II) DFB-Cu2+ + 2CN- => Cu(CN)2 + DFB) as 

copper cyanide salt by CN- ions with the release of the Cu-free chemosensor DFB. The 

CN- anion binding plot analysis (Fig. S13) with an appreciable binding constant (Ka = 

2.50 × 1010 M−2) and almost complete revival of fluorescence emission at 535 nm 
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(99.6%) confirms the formation of Cu(CN)2 and metal-free DFB from the dicopper(II) 

complex DFB-Cu2+. Moreover, the DFB-Cu2+ showed a remarkable CN- detection limit 

(9.43 ± 0.2 × 10-9 M) (Fig. S14A), and it is higher than those of the reported literature of 

Cu2+-based CN- sensors [74-77], suggesting the potential use of our fluorescent probe for 

CN- detection in both environmental and biological samples.   

On the other hand, the DFB derived Zn2+-complex DFB-Zn2+ served as a secondary 

sensor for anions and displayed high selectivity and sensitivity toward PPi over other 

anions. This was reflected in absorption spectral selectivity experiments (Fig. S15A) 

where the main absorption band of DFB-Zn2+ at ca. 405 nm was considerably shifted to a 

longer wavelength (420 nm) upon binding of PPi even in the presence of a range of the 

above listed common anions used for DFB-Cu2+. To ascertain the PPi binding propensity 

of DFB-Zn2+ in the ground state, we have performed the absorption spectral titration of 

DFB-Zn2+ with PPi in an aqueous medium (Fig. S15B). The DFB-Zn2+ showed a very 

broadband centred at 405 nm. Upon increasing addition of PPi to a solution of DFB-

Zn2+, the absorption maxima at ca. 405 nm slowly decreased along with a Stark redshift 

(⁓25 nm). Analysis of the change in the initial absorption maxima (Abs405/Abs425) of 

DFB-Zn2+ (5 μM) as a function of [PPi] (0-25 μM) using the nonlinear least-squares 

fitting allowed to determine the binding constant (KPPi) as 2.4 × 104 M-1 (Fig. S16A). 

 

 

Fig. 5. (A) Fluorescence spectral profiles of DFB alone, and DFB-Zn2+ (5 μM) with and 
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without the presence of various anions including PPi and ssDNA (0−20 μM) in CH3CN / 

(50 mM) HEPES buffer medium at pH = 7.4. (ex = 380 and em = 505 nm). (B) Titration 

of DFB-Zn2+ (5 μM) versus PPi (0−20 μM) and inset showing the linear Benesi–

Hildebrand plot of measured [1/(F−F0)] at 505 nm as a function of 1/[PPi].   

 

Under similar conditions, DFB-Zn2+ (5 μM) showed an influential fluorescence band at 

ca. 505 nm upon exciting at 380 nm. This has almost remained the same in the presence 

of other anions and potentially interfering phosphates such as ADP and AMP and Pi, 

except the ATP and PPi which induced a significant quenching response. However, PPi 

elicits a dramatic quenching with a significant red shift of ⁓27 nm (Fig. 5A). To further 

prove and ascertain the extent of selective PPi binding affinity of DFB-Zn2+, we have 

carried out the fluorescence titration experiments (Fig. 5B). Upon gradual addition of PPi 

concentration (0-20 μM) in the solution of DFB-Zn2+ (5 μM), the initial fluorescent 

intensity at 505 nm was significantly attenuated (Ka = 1.1 × 104 M-1) with a Stark shift 

(⁓27 nm) to longer wavelength up to 532 nm (Fig. S16B). Notably, the extent of PPi 

induced quenching (83%) was higher than the fluorescent enhancement (73%) upon 

increasing concentration of Zn2+ to the chemosensor DFB. This 10% efficient quenching 

indicates the formation of a new receptor-PPi (DFB-Zn2+-PPi) complex rather than the 

displacement of Zn2+ ion from DFB-Zn2+ as Zn2+-PPi complex and the metal-free 

chemosensor DFB. The weaker emission of the new DFB-Zn2+-PPi complex than the 

metal-free DFB is attributed to the weak force of interaction between chemosensor DFB, 

and Zn2+ ion induces the reversal of PET process between donors in the metal-binding 

sites to the 4-methyl phenyl group. Besides, the NH groups presence in the 

benzimidazole arms of DFB also facilitates the intermolecular hydrogen bonding 

interaction with negatively charged oxygens of PPi, which modulates the PET 

mechanism [78], by altering the photophysical characteristics of fluorophores upon anion 

recognition.  
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The PPi interaction mode of receptor DFB-Zn2+ was further ascertained by the 31P-NMR 

method. The potassium salt of PPi (5 mM) in D2O showed a single 31P resonance at δ -

6.20 (Fig. 6), which indicates that both the P nuclei of PPi are magnetically equal. 

However, this single signal was greatly perturbed, being replaced by two new broad 

signals at δ -3.32 and -4.57 upon addition of one equivalent of DFB-Zn2+ (5 mM). The 

significant downfield chemical shift values (∆δ = -2.88 and -1.63 ppm) for the P-atoms 

(Pa and Pb) suggest that they are magnetically unequal [79], and the electron density 

around each P atom was reduced upon interaction with DFB-Zn2+. Based on these 

results, we postulate that the comparatively higher downfield shifted signal at -3.32 ppm 

concerns Pa, which contributes with two oxygens for coordination, as shown in Fig. 6. 

The less shifted resonance at -4.57 ppm is assigned to Pb with a shorter reduction of 

electron density, which likely interacts with the NH group of a benzimidazole moiety 

through one of the oxygens by hydrogen bonding. These results agree with the proposed 

structure (Scheme 2) of the new receptor-PPi complex (DFB-Zn2+-PPi).      

 

Fig. 6. 31P NMR spectra of K4P2O7 (5 mM) and DFB-Zn2+ (5 mM) in D2O.  
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To substantiate the practical harnessing of DFB-Zn2+ as the fluorescence PPi probe, we 

performed competitive titration experiments with other potentially competing anions Fig. 

S17. The initial fluorescence emission of DFB-Zn2+ at ca. 505 nm underwent little or 

negligible fluctuations (blue bars) upon mixing with two equivalents of the other anions 

as mentioned above except for ATP which induced a significant quenching (35%). 

However, the successive addition of PPi (two equivalents) elicited a dramatic (80%) 

fluorescence quenching (green bars), which confirmed the high selectivity and sensitivity 

of DFB-Zn2+ towards PPi over a range of potentially competing anions and organic 

phosphates in an aqueous medium. Moreover, we have used the PPi induced quenching 

effect to estimate the PPi detection limit of DFB-Zn2+ as 2.9 ± 0.1 × 10–9 M (1.76 ppb) 

(Fig. S14B), which is comparable to other reported Zn2+-based PPi sensors [80-83]. This 

indicates that DFB-Zn2+ is an efficient PPi sensor which allowed to quantify the PPi level 

in biological samples (e.g. PPi concentration in human blood plasma = 1.19–5.65 µM) [7, 

84-86]. 

2.4. DNA recognition studies 

Development of chemosensors for nucleic acid recognition became increasingly 

attractive due to their diverse applications, including disease progression and diagnosis of 

early stages of cancer [87].  In particular, small molecule-like compounds can interact 

with macro-biomolecules such as nucleic acids in many ways, including intercalation (π-

π-interaction) between the base pairs, covalent, noncovalent, hydrophobic or electrostatic 

interaction [88]. Of particular significance are the metal-based systems with vacant 

coordination sites in their metal centres and overall positive charge which favours the 

noncovalent (electrostatic) interaction with negatively charged phosphate groups 

(backbone) of nucleic acids [89]. The encouraging results we accomplished from the PPi 

sensor experiments of DFB-Zn2+ tempted us to harness this dicationic complex system to 

probe the DNA molecule. To demonstrate the DNA recognition capability of DFB-Zn2+, 
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we have carried out fluorescence titration experiments (Fig. 7) of DFB-Zn2+ with two 

different single-stranded (random 19- and 20-mer) DNA sequences, i.e., XOF (5’-

GCATGACGTCATCGTCCTG-3’), XAPF (5’-GCAAGCTGATCGGTATCCTC-3’) and 

a double-stranded (calf thymus) CT-DNA in CH3CN/Tris-HCl (50 mM NaCl) buffer 

medium at pH = 7.4.  

 

Fig. 7. (A-C) Change in the initial fluorescence spectrum of DFB-Zn2+ (5 μM) upon 

gradual addition of ssDNA (XOF and XAPF) and CT-DNA (0−10 μM), respectively, in 

CH3CN/Tris-HCl (50 mM NaCl) buffer medium at pH = 7.4. (D) The linear Benesi–

Hildebrand plot of [1/(F−F0)] versus 1/[DNA].   

 

As shown in Fig. 7A-C, the intense fluorescence emission of DFB-Zn2+ (5 μM) at ca. 

505 nm (λex = 380 nm) was dramatically attenuated (>85%) when adding aliquots of 
XOF, XAPF and CT-DNA solutions (0-10 μM). Both ssDNA and dsDNA (~2.0 

equivalents) induced almost similar and strong fluorescence quenching (~6.0 fold 

decrease) with a Stark shift to the longer wavelength of 530 nm. These remarkable 
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quenching responses with a robust redshift (~25 nm) of DFB-Zn2+ indicate the formation 

of new sensor-DNA complexes such as DFB-Zn2+-XOF, DFB-Zn2+-XAPF and DFB-

Zn2+-CT-DNA, respectively, rather than the displacement of Zn2+ from DFB-Zn2+. All 

these new sensor-DNA complexes are formed via electrostatic interaction between the 

dicationic sensor (DFB-Zn2+) and the negatively charged phosphate groups of DNA 

molecules consistent with the selective PPi binding experiment results and facilitate the 

PET process as observed in the DFB-Zn2+-PPi formation. 

To ascertain the DNA binding propensity of DFB-Zn2+, we have plotted the reciprocal of 

fluorescence intensity variation against the reciprocal of DNA concentration (1/(F0-F) 

versus 1/[DNA]) (Fig. 7D).  The XOF, XAPF and CT-DNA binding constants (Kb) of 

DFB-Zn2+ are 4.0 × 105,  3.95 × 105 and 1.5 × 105 M-1, which agree with the fluorescence 

quenching responses of 86, 87 and 82%, respectively, obtained from the fluorescence 

spectral titration profiles. The significantly higher binding propensity and quenching 

responses of DFB-Zn2+ toward ssDNA (XOF and XAPF) over ds(CT)DNA suggests that 

the sensor preferentially interacts with ssDNA since the negatively charged phosphate 

groups are more exposed to the solvent than in the case of ds-DNA [90, 91]. Besides, we 

have also determined the DNA detection limit values (LOD) of DFB-Zn2+ for XOF, 

XAPF and CT-DNA (Fig. S18) from the titration profiles as 5.5 × 10-7, 4.5 × 10-7 and 5.7 

× 10-7 M, respectively, suggesting that it is an excellent Zn2+-based nucleic acid sensor. 

2.5. Live-cell imaging 

After identifying the nanomolar fluorescence (off-on responsive) detection capability of 

DFB toward Cu2+ and Zn2+ ions in an aqueous medium, we intended to use it as a 

fluorescent probe to detect the same ions in biological scenarios such as human cervical 

(HeLa) and breast (MCF-7 and MDA-MB 231 (invasive an aggressive)) and cancer cell 

lines in vitro (Figs. 8 and S19). We have used both live and fixed cell imaging strategies 

to verify the Cu2+ and Zn2+ recognition potentials of DFB under physiological conditions. 
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In the presence of chemosensor DFB (20 µM), cancer (HeLa, MCF-7 and MDA-MB 

231), cell lines are significantly fluorescent (Figs. 8b, 8g and S19b).  

 

 

Fig. 8. (a-e and f-j) Live cell images of MCF-7 and HeLa cells, respectively, 

photographed by Olympus upright microscope: Bright field (a, c, f and h) and 

fluorescence images (b and c) of MCF-7 and HeLa cells incubated (2 h) with DFB (20 

µM). Fluorescence images of MCF-7 and HeLa cells supplemented with DFB (20 µM) 

and two molar equivalents (40 µM) of Cu2+ (d and i) and Zn2+ (e and j). (k-t) 

Fluorescence images of HeLa cells (plated on coverslips in 6-well plates) imaged using 

40x objective of Leica fluorescent microscope. (k and p) Fluorescence images of HeLa 

cells with DAPI as controls. i and q are the HeLa cells incubated (3 h) with DFB (20 µM) 

and DFB-Zn2+ (20 µM) alone, respectively. The images m and r are the composite 

fluorescent images of k-l and p-q, respectively. The images n and o are the images of 

HeLa cells incubated with DFB (20 µM) + Cu2+ (40 µM) and DFB (20 µM) + Cu2+ (40 

µM) + EDTA (40 µM), respectively. The images s and t are the images of HeLa cells 

incubated with DFB (20 µM) + Zn2+ (20 µM) + PPi (20 µM) and DFB (20 µM) + Zn2+ 

(20 µM) + EDTA (20 µM), respectively.  
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However, this has been quenched almost completely upon incubation with DFB and two 

molar equivalents of Cu2+, indicating that DFB exhibits Cu2+ responsive potential in 

living cells. On the other hand, cells (Figs. 8e and 8j) supplemented with equimolar 

amounts of DFB and Zn2+ display enhanced fluorescence confirming biological Zn2+ 

detection capability of the sensor. Similarly, the observations in fixed (HeLa) cell 

imaging experiments (DFB with and without the presence of Cu2+ and Zn2+ ions (Figs. 

8k-o, 8p-t and S19d-o) are also consistent with the results of live (HeLa and MDA-MB 

231) cell imaging (Figs. 8f-j and S19a-c) and physicochemical sensor studies. In addition, 

the PPi imaging capability of ‘in situ’ generated monozinc(II) complex of DFB, i.e., 

DFB-Zn2+, was examined in the presence of an equimolar amount of PPi. The marginal 

decrease in fluorescence in the HeLa and MDA-MB 231 cells (Fig. 8s and S19m-o) 

indicates the potential detection of PPi by DFB-Zn2+ under physiological conditions. 

Notably, the fluorescence in the HeLa cells incubated with DFB + Cu2+ or DFB + Zn2+ 

ions were almost completely reversible upon addition of an equimolar amount of a 

benchmark chelating agent such as EDTA (rather than using lethally toxic CN-). These 

results show that DFB is a reversible sensor which gains access to both the cytosolic and 

nuclear compartments. Interestingly, the experiments discussed to demonstrate the 

potential of the probe in further applications, including elucidating the PPi mechanism 

through the ectonucleotide pyrophosphatase (Enpp1) enzyme levels overexpressed in 

breast cancer metastatic cells [92].  Taken together, our studies propose that DFB is a 

potential sequential multianalyte (Cu2+, Zn2+ and PPi) imaging agent to ascertain their 

biological activity in living cells.   

2.6. Pyrophosphate (PPi) detection in PCR amplified DNA mixtures  

In recent years, PPi is considered as one of the potential biomarkers for various diseases 

including cancer, infectious and arthritis [93-96], since micromolar levels of PPi are 

present in the plasma of healthy adults [86]. Pyrosequencing is also a vital method to 
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recognise single nucleotide changes in genetic disorders in humans and pathogens, 

including somatic variations (low-level) caused by DNA point mutations in human genes 

that lead to cancer [97]. Also recently, the method is shown to increase accuracies of 

diagnosis of respiratory pathogens, including SARS-CoV-2 [98]. In principle, PPi is one 

of the primary by-products of the DNA polymerase reaction in PCR. It is essential for 

pyrosequencing (DNA sequence-by-synthesis strategy) and is often recognised by a 

fluorescent method using suitable sensors with fluorophores [97, 99, 100]. We also have 

developed fluorogenic Zn2+-based probes to detect PPi in the polymerase chain reaction 

(PCR) product mixtures [84, 85].  
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Fig. 9. (A) Gel (1.5% ultrapure agarose) electrophoresis diagram of PCR amplified DNA 

mixtures (left-right). (1) 100 bp NEB ladder, (2) negative control without the template, 10 

μL of the finished PCR product mixture (a 440 bp target site on the human genome was 

amplified using Taq polymerase and specific primers) performed with template DNA 

after (3) 29 cycles, (4) 30 cycles, (5) 31 cycles, (6) 32 cycles, and (7) 35 cycles). (B)  

Change in the fluorescence intensity of DFB−Zn2+ at 520 nm upon addition of the PCR 

product mixtures obtained from the different PCR cycles 29, 30, 31, 32 and 35, 

respectively. 

 

Although the initial fluorescence intensity of the DFB derived Zn2+ complex (DFB-Zn2+) 

at 520 nm (Fig. 5) was decreased considerably (⁓80%) upon selective binding of PPi 

over a range of other potentially interfering phosphates including ATP, still, it can be 

used to ascertain the PPi levels in PCR products. Therefore, we intended to use DFB-
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Zn2+ as a PPi recognising probe in PCR amplified DNA product mixtures. The gel 

electrophoresis diagram (Fig. 9A) confirms that the DNA production with the same 

molecular weight is increased with increasing the number of PCR cycles in which band 

intensity is directly proportional to the amount of PPi liberated during PCR. To further 

prove the PCR released PPi detection of DFB-Zn2+, the PCR products obtained from 

different cycles were incubated with DFB-Zn2+ (0.5 mM) and the change in the 

fluorescence intensity at 520 nm was recorded. As expected, the fluorescence intensity at 

520 nm corresponding to the sensor DFB-Zn2+ decreased considerably (⁓50%) with 

increasing the number of PCR cycles. This implies that DFB-Zn2+ is a potential PPi 

fluorescent probe used in new generation pyrosequencing strategies to ascertain the PPi 

levels in the biological scenarios.    

2.7. Comparison of sequential recognition (Cu2+/Zn2+, CN-/PPi and DNA) capability of 

reported chemosensors with DFB 

In order to explore the unique multi-analyte (Cu2+, Zn2+, CN-, PPi and DNA) 

fluorescence responsive ability of the simple Schiff base type benzimidazole-based 

chemosensor DFB, we have performed a comparative analysis of previously reported 

sequential sensors (Table S1) [101-112]. Although most of the listed chemosensors (C1-

C3 and C5-C12) detected both metal ions and anions, none of them can simultaneously 

recognize more than one anion at a time similar to the proposed chemosensor DFB 

discussed in this paper. Notably, one of the reported Schiff base type sensors (C4 

developed by our group in 2015) showed ‘off-on-off’ fluorescence responses toward 

Cu2+, Zn2+ and PPi, respectively. However, the ‘turn-off’ response of the C4-derived Zn2+ 

complex (C4-Zn2+) towards PPi over other anions and nucleotide phosphates was 

attributed to the modulated PET mechanism. Several showcased sensor systems such as 

C3, C5, C6 and C7 possess simultaneous Cu2+/Zn2+ ions and PPi/CN- detection 

capability. However, they liberate the chemosensor back upon forming the metal-anion 
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complex (M2+-PPi or M2+-(CN)2) rather than the formation of PPi/CN- bound 

chemosensor-Cu2+/Zn2+ complex.  This was attributed to weaker binding interaction 

between Cu2+/Zn2+ ions and chemosensors (C3, C5, C6 and C7) than metal (Cu2+/Zn2+) 

ions and PPi/CN- which lead to leaching of metal ions from the chemosensor-derived 

Cu2+/Zn2+-complexes. More specifically, we have isolated chemosensor-derived Cu2+ and 

Zn2+ complexes (DFB-Cu2+ and DFB-Zn2+). Both of them are water-soluble, and the 

latter dimeric complex was harnessed as a fluorescence probe to detect the PPi levels in 

PCR amplified DNA mixtures.    

4. Conclusions 

We have designed and developed a new benzimidazole fluorophore appended Schiff base 

type chemosensor DFB by employing a single pot synthesis strategy.  The DFB serves as 

excellent differential chemosensor, which displays “off-on” fluorescence responses 

toward Cu2+ (LOD = 24.4 nM) and Zn2+ (LOD = 2.4 nM), respectively, in aqueous 

medium. Also, we have generated DFB-derived in situ Cu2+ and Zn2+ complexes, DFB-

Cu2+ and DFB-Zn2+
, and used them as secondary sensors for anions and nucleic acid 

recognition in an aqueous medium, in which they formerly displayed highly selective 

fluorescence “turn-on” response upon selective detection of CN- (LOD = 9.43 nM) over a 

range of other competitive anions. On the other hand, the DFB-Zn2+ sensor system 

displayed a highly selective and sensitive fluorescence response toward PPi (LOD = 2.9 

nM) even in the presence of potentially interfering other anions and phosphates including 

ATP, ADP, AMP in an aqueous medium. The Schiff base type chemosensor DFB acts as 

a promising sequential fluorescent imaging probe including concomitant detection 

potential of Cu2+, Zn2+ and PPi in live-cell imaging of cultured cancer cells. More 

importantly, the sensor derived Zn2+ complex (DFB-Zn2+) shows potential to detect PPi 

in metastatic, aggressive (human) breast cancer (MDA-MB 231) cells and found in PCR 

amplified DNA product mixtures.         
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Moreover, to the best of our knowledge, for the first time, we have used a simple Schiff 

base type chemosensor for recognising nucleic acids (ssDNA and dsDNA) and found that 

the DFB-Zn2+ sensor can form a DFB-Zn2+-ssDNA/dsDNA complex via electrostatic 

interaction between the sensor and phosphate backbone of the DNA, in an aqueous 

medium. 

Overall, DFB is a simple, economical, portable and excellent chemosensor capable of 

detecting both Cu2+ and Zn2+ ions simultaneously. The DFB derived metal complexes 

also can be used as secondary sensors for CN- and PPi/DNA, in an aqueous medium, 

showing distinct fluorescence signals.   
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A benzimidazole–based chemosensor (DFB) for Cu2+ and Zn2+ was developed, and its 

sequential anions (CN- and P2O7
4-) and DNA sensing capability and its live-cell imaging, 

as well as its PPi detection in PCR-amplified DNA products, has been demonstrated.   
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