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Abstract: Early and precise identification of brain tumours is imperative towards enhancing patient 1

life expectancy; this can be facilitated by quick and efficient tumour segmentation in medical imaging. 2

Automatic brain tumour segmentation tools in computer vision have integrated powerful deep 3

learning architectures to enable accurate tumour boundary delineation. Our study aims to demon- 4

strate improved segmentation accuracy and higher statistical stability using datasets obtained from 5

diverse imaging acquisition parameters. This paper introduces a novel, fully automated model called 6

Enhanced Channel Attention Transformer (E-CATBraTS) for Brain Tumour Semantic Segmentation; 7

this model builds upon 3D CATBraTS, a vision transformer employed in magnetic resonance imaging 8

(MRI) brain tumour segmentation tasks. E-CATBraTS integrates convolutional neural networks and 9

Swin Transformer, incorporating channel shuffling and attention mechanisms to effectively segment 10

brain tumours in multi-modal MRI. The model was evaluated on four datasets containing 3137 brain 11

MRI scans. Through the adoption of E-CATBraTS, the accuracy of the results improved significantly 12

on two datasets, outperforming the current state-of-the-art by mean DSC of 2.6% while maintaining 13

a high and comparable accuracy to the top-performing models on the other datasets. The results 14

demonstrate that E-CATBraTS achieves both high segmentation accuracy and elevated generalisation 15

abilities, ensuring the model is robust to dataset variation. 16

Keywords: Brain tumour, Convolutional neural network, Semantic segmentation, Transformer, 17

Tumour segmentation 18

1. Introduction 19

A brain lesion is an abnormality in the brain caused by injury or disease, and such 20

lesions can disrupt communication in the affected area. Brain lesions take many forms 21

and vary in severity depending on their type and cause [1]. For example, some lesions are 22

caused by traumatic brain injury, which can lead to stroke, infections in the brain, decreased 23

cognitive function and brain tumours [2]. 24

Clinically defined as a cerebral neoplasm, a brain tumour is formed by abnormal and 25

excessive growth of mutated tissues within or near the brain [3]. As such, primary brain 26

tumours originate in the brain, whereas secondary brain tumours can spread to the brain 27

from other organs, including the lungs, colon, and kidneys. A benign brain tumour is 28

non-cancerous and grows relatively slowly in the brain. Symptoms might progressively 29

worsen over a matter of months or years, including drowsiness, nausea and vomiting, and 30

persistent headaches. In contrast, malignant brain tumours are fast-growing and cancerous, 31

and a sufferer may quickly develop symptoms over days or weeks [4]. Specialists develop 32

treatment plans based on factors such as the location and aggressiveness of the tumour, 33

which is indicated by its grade, and the patient’s age and sex [5]. 34

The mortality rate for brain tumours is the second highest of all major cancers, with 35

a five-year survival rate of 12% following pancreatic cancer. There are several factors for 36

the low survival rate [6], including the misdiagnosis or late detection of malignant brain 37
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tumours. A recent analysis of extensive patient data concluded that a four-week delay in 38

appropriate treatment is associated with increased mortality [7]. 39

Manual brain tumour detection in medical images such as magnetic resonance imaging 40

(MRI) volumes is a tedious, time-consuming task and subject to the limitations of human 41

eyesight. An investigation into radiologists’ workload [8] revealed that they would have 42

to read around one medical image scan every 3 seconds in a working shift to cover the 43

overload. Hence, a significant amount of literature on deep learning (DL) networks focuses 44

on medical image analysis, particularly in developing precise computer-aided diagnosis 45

(CAD) tools for tumour segmentation. 46

As an architecture for DL algorithms, convolutional neural networks (CNNs) have 47

dominated CAD-based medical image analysis by outperforming artificial neural networks 48

(ANN) and long short-term memory (LSTM) for automatic 3-dimensional (3D) organ seg- 49

mentation [9] and classification in medical images, resulting in higher accuracy relative 50

to the gold standard of expert-led manual segmentation [10][11]. For instance, CNNs 51

can be employed to classify interstitial lung disease patterns of the lung [12], skin cancer 52

detection [13], and fundus detection [14]. However, one major drawback of this architecture 53

is the application of attention mechanisms, which only focus on neighbouring pixels and 54

do not relate to global features. Thus, transformers were introduced as a self-attention ap- 55

proach to overcome this issue, in which every element can link to long-range dependencies; 56

this approach received exceptional interest after surpassing competing CNNs in natural 57

language processing (NLP) tasks [15]. Following the tremendous success of transformers 58

for NLP, researchers from Google considered applying transformers for computer visioning 59

and proposed an architecture named Vision Transformer (ViT) [16]. In this paper, we 60

propose an Enhanced Channel Attention Transformer for Brain Tumour Semantic Segmen- 61

tation (E-CATBraTS) as a novel state-of-the-art DL model for brain tumour segmentation 62

in multi-modal MRI volumes. We trained and evaluated E-CATBraTS on four datasets, 63

demonstrating that our novel approach outperforms the current state-of-the-art in accuracy 64

and generalisability. The implementation is available at *****(the link will be available upon 65

acceptance), and the original contributions to research in the context of medical image 66

segmentation are as follows: 67

• a novel ViT-CNN model for the automatic segmentation of brain tumours in MRI 68

volumes using channel shuffling and a channel-attention mechanism, improving both 69

segmentation accuracy and the model’s generalisability on different MRI sequences 70

and multi-modal MRI datasets; 71

• an original CNN encoding block with a channel-attention module that can exploit 72

tumour features which optimise the robustness of the segmentation on various brain 73

tumour regions and image artefacts; 74

• a comprehensive validation on four different datasets, which demonstrates higher 75

segmentation accuracy and generalisability compared to the current state-of-the-art 76

models. 77

The remainder of this paper is organised as follows. Section 2 provides a brief overview 78

of current state-of-the-art DL models for medical image segmentation. Section 3 details the 79

proposed E-CATBraTS model for brain tumour segmentation, while Section 4 describes four 80

different datasets used to train, validate and evaluate the proposed approach and covers the 81

evaluation and the implementation details. Section 5 delivers and performs a quantitative 82

analysis of the segmentation results. Moreover, Section 6 discusses and provides a critique 83

of these results against the current state-of-the-art. In conclusion, Section 7 provides a 84

summary of the proposed novel approach, coupled with findings and future work. 85

2. Background 86

Over the past decade, different types of CNN architectures have dominated the field 87

of radiomics in modern medicine [17], including the successful integration of an attention 88

mechanism layer. Most recently still, ViTs have gained popularity as a method for solving 89

medical image classification and segmentation tasks. 90
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Figure 1. E-CATBraTS with channel shuffle module for shuffling embedded feature maps prior to
reducing its size using a novel CAT encoding block.

Figure 2. Swin Transformer with four stages: it takes, as an input, non-overlapping patches of
magnetic resonance imaging (MRI) volumes.

One of the most widely used CNNs is known as U-Net, which is based on the fully 91

convolution network [18][19]. The architecture primarily consists of a downsampling 92

(encoder) and upsampling (decoder) phase. The main contribution of U-Net is presented in 93

the decoder network consisting of four blocks, in which convolutional upsampling replaces 94

the max pooling layers to enhance the resolution of the output. U-Net suffers from the 95

vanishing gradient problem: increasing the number of layers causes the gradients of the 96

loss function to decrease exponentially as it propagates down to the initial input layer and 97

leads to degradation in network convergence. 98

Another encoder-decoder architecture, SegResNet, builds upon ResNet with an auto- 99

encoder (VAE) branch to address the problem of vanishing gradient [20][21]. First, the 100

encoder network extracts feature maps from the image using residual blocks. Secondly, the 101

decoder employs a 3D 1 × 1 convolutional layer and 3D bi-linear upsampling to increase 102

the maps’ spatial size, which is then added to the output of the equivalent encoding block. 103

The output classes are computed by a 3D 1× 1 convolutional layer and a sigmoid activation 104

function. Despite winning the RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS) 105

Challenge of 2018 [22], the SegResNet architecture adds more complexity to the training 106

phase, leading to an over-fitted model [23]. 107

In the past year, the novel architecture Shifted WINdows UNEt TRansformers (Swin 108

UNetR) has gained popularity as a ViT neural network for 3D semantic segmentation of 109

brain tumours in MRI volumes. Swin UNetR is based on the Swin Transformer (Swin-T) 110

merged with a CNN-based decoder utilising a shifted window module [24]. 111

Swin UNetR passes the network’s input to Swin-T, which creates 3D non-overlapping 112

tokens of the input using a patch-splitting mechanism. By employing a transformer 113

encoder, Swin-T reduces the number of patches in one of the four stages; the first stage of 114

the transformer encoder consists of a linear embedding layer and two transformer blocks 115



Version January 14, 2025 submitted to J. Imaging 4 of 16

based on shifted windows [25]. Each subsequent stage contains a patch merging layer to 116

downsize the features by a factor of 2 and two transformer blocks. 117

Next, the encoded features pass through a CNN residual decoder that upsamples 118

the features to the original resolution via skip connections. Swin UNetR performed better 119

than current state-of-the-art such as SegResNet, nnU-Net [26][27] and TransBTS [28] in 120

the BraTS 2021 challenge validation phase. However, the findings could have been more 121

comprehensive if Swin UNetR had been tested on datasets with varying image quality. 122

The performance of Swin UNetR is likely to decline when applied to lower-quality images, 123

which restricts its use to high-quality datasets. It is essential to develop a model that remains 124

robustly accurate across different imaging qualities so that it can be used effectively in 125

real-life scenarios where medical images come in various resolutions. 126

3. Methodology 127

In a real-life scenario, the quality of medical imaging varies for several reasons. For 128

example, the slightest movement by a patient during their scanning process will add 129

artefacts known as noise to the resultant image and negatively impact its interpretation. 130

The most common noises include Gaussian, salt and pepper, poison and impulse [29]. 131

Therefore, producing a generalisable model that can be successfully applied to multiple 132

datasets with high accuracy is essential. For this purpose, we developed E-CATBraTS, a 133

novel model that improves upon 3D CATBraTS [30] and delivers higher generalisability 134

and segmentation accuracy across datasets acquired using multiple sequences and scanner 135

protocols. 3D CATBraTS is a hybrid deep learning method that employs ViTs and CNNs 136

for 3D brain tumour segmentation in MRI and has outperformed competing methods in 137

the validation phase of the BraTS 2021 challenge. However, the main weakness of the 138

approach is its reliance on specific data, which makes it susceptible to biases and results in 139

poorer segmentation performance when dealing with new, unseen data. To address these 140

issues, our proposed model, E-CATBraTS, employs channel-shuffling and channel-attention 141

mechanisms and can be described in three main parts, namely the Swin Transformer, the 142

down-sampling, and the up-sampling, as shown in Figure 1. 143

The first part integrates Swin Transformer (Swin-T), as illustrated in Figure 2, which 144

processes a multi-modal MR image input with dimensions 128 × 128 × 96 × 4, and splits 145

the volume into non-overlapping shifting windows using a patch partition module. Shifted 146

windows allow improved efficiency by computing self-attention from local windows, and 147

its hierarchical structure ensures scalability to compute information at different scales. After 148

splitting, the patches undergo linear embedding to produce patches of size 2 × 2. Next, two 149

transformer blocks are applied to the tokens to complete the first stage. The resulting output 150

is processed through the second stage, and each additional stage contains a patch merging 151

layer that concatenates neighbouring patches and downsamples the number of patches by 152

a factor of 2, followed by two transformer blocks employed for feature transformation. 153

In the second part of E-CATBraTS, we introduce five channel shuffling blocks applied 154

to the output of Swin-T, shown as green blocks in Figure 1. Consider an input of size 155

W × H × C to represent the width, height and number of channels, respectively. Channel 156

shuffling is a computationally effective operation that reshapes the feature map as W × 157

H × G × C
G , where G denotes the number of groups in which to divide the channels. Next, 158

the tensor is permuted and reshaped to the original dimensions. Figure 3 illustrates the 159

process of channel shuffling: the squares coloured yellow, red, green, and blue designate 160

the channels of the four MRI acquisitions T1, T1-weighted, T2, and T2-FLAIR. We set the 161

number of groups to 4 based on the number of MRI acquisitions. We also experimented 162

with the module having two groups, allowing each channel to exchange information with 163

one from another group in order to prevent feature loss. By shuffling the channels, we 164

enable the flow of information between the feature maps in the same spatial location 165

so each group holds information from the other groups. We use the channel shuffling 166

mechanism as a regularisation technique to improve our model’s evaluation accuracy and 167

convergence rate and help reduce the risk of overfitting. Moreover, when shuffling the 168
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Figure 3. Channel shuffle. Channels are divided into four subgroups.

Figure 4. A single CAT encoding block. The block takes X as an input and applies a 3D convolution.
Next, normalisation is performed using a 3D batch normalisation function before progressing through
a channel attention module and activated in a LeakyReLU layer.

feature maps between the channels, it will work as structured noise for the channels, which 169

can substantially improve the model’s generalisable capabilities. After shuffling the feature 170

maps, we perform downsampling using CNN encoding blocks to reduce the size of the 171

feature maps. 172

We removed the residual encoding blocks of 3D CATBraTS and replaced them with six 173

novel, simplified CNN-based alternatives known as CAT blocks, as presented in Figure 1. 174

Our proposed encoding block processes a given input, which corresponds to the output 175

channels generated from the channel shuffling blocks, through a 3 × 3 × 3 convolutional 176

layer of stride 1 and padding 1. The next step includes 3D batch normalisation and 177

integration of a channel attention module of two layers: a global average pooling layer and 178

a fully connected layer. A global average pooling layer reduces the spatial dimension of 179

feature maps by averaging the feature maps to attain channel weights, computed as: 180

mk =
1

W × H

W

∑
i=1

H

∑
j=1

xk(i, j),

where xk(i, j) represents the feature map of the kth channel on the spatial location (i, j) [31]. 181

mk denotes kth channel global average pooling. 182

The fully connected layer obtains the cross-relationship between the channels and 183

scales the weights. Not all feature maps exhibit the same level of importance for network 184

optimisation; for instance, feature maps containing background information contribute less 185

to the resultant segmentation than feature maps containing more meaningful contextual 186

information, such as the target tumour and surrounding membrane tissue. Thus, we 187

employed the attention module to provide extra weight to the channels that significantly 188

exploit tumour features of interest, which will improve the convergence and generalisation 189

capabilities of the model [32]. The output of a CAT block is a LeakyReLU of the channel 190

attention module. It is important to note that the feature maps’ size in the first CAT block is 191

H × W × D × 48, and reduced by a factor of 2 until reaching H
32 × W

32 × D
32 × 768 in the final 192

block. 193
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Figure 5. Brain tumour subregion segmentation in three randomly selected MRI cases from the test
UCSF-PDGM dataset.

In the third part of our proposed model, the feature maps are upsampled to their orig- 194

inal size using five residual decoding blocks, as highlighted in Figure 1. Upon completion, 195

a 1 × 1 × 1 convolution is applied to map out three tumour subclasses of interest: whole 196

tumour (WT), tumour core (TC), and enhancing tumour (ET). 197

4. Experiments 198

4.1. Datasets 199

To evaluate the performance and robustness of E-CATBraTS, we trained and tested 200

our model on four datasets: UCSF-PDGM, UPENN-GBM, EGD, and BraTS 2021 201

The UCSF-PDGM dataset includes 501 cases of MRI volumes, which can be accessed 202

from the Cancer Imaging Archive [33][34] [35]. The imaging modalities include T1, T1- 203

weighted, T2, and T2-FLAIR primarily. The ground-truth labels were initially generated 204

using a winning segmentation algorithm and manually reviewed and edited by trained 205

radiologists; the dataset includes the labels for the enhancing tumour (ET), tumour core 206

(TC), and whole tumour (WT). We split the dataset into 351 for training, 101 for validation 207

and 49 cases for evaluating our proposed model. 208

UPENN-GBM is a collection of 611 cases of MRI volumes involving de novo Glioblas- 209

toma (GBM) patients from the University of Pennsylvania Health System (UPENN) between 210

2006 and 2018 [36][37][35]. The MR images were obtained via sequences T1, T1-weighted, 211

T2, and T2-FLAIR, coupled with the techniques of diffusion tensor imaging and dynamic 212

susceptibility contrast for most cases. In this study, we split the dataset into 427 cases for 213

training, 122 cases for validation and 62 cases to evaluate our model’s performance. 214

The Erasmus Glioma Database (EGD) contains the MRI scans of patients with glioma, 215

split by 281 female, 492 male and one unknown cases [38]. The MR images were obtained 216

using four main acquisition protocols, including T1, T1Gd, T2, and T2-Flair. A WT ground 217

truth segmentation was included for each case, 374 of which were manually annotated 218

before registration to a common atlas, and the remaining 400 were automatically segmented 219

after registration. For this study, we split the EGD database into 540 cases for training, 117 220

cases for validation and 117 for testing our model. EGD is available at the Health-RI XNAT 221

upon request and granted access after signing a data usage agreement [39]. 222
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Figure 6. Segmented brain tumours in three randomly selected cases in the test UPENN-GBM dataset.

The Brain Tumor Segmentation BraTS dataset for 2021 is arguably one of the most 223

popular datasets employed in developing and testing novel brain tumour segmentation 224

models. BraTS contains the brain MRI scans of 1251 patients diagnosed with brain tumours, 225

all of whom underwent pre-processing and were manually annotated and reviewed by 226

specialist radiologists. The dataset also provides the four MRI modalities: T1, T1Gd, T2, 227

and T2-Flair [40][41][42]. We used a subset of 50 scans from the UCSF-PDGM dataset for 228

testing. 229

4.2. Evaluation 230

To evaluate the segmentation accuracy of E-CATBraTS, we use the Dice similarity 231

coefficient (DSC), Jaccard index, and Hausdorff distance (HD) performance metrics. DSC 232

is a score between 0 and 1, which measures the similarity between the ground truth and 233

prediction as two separate data sets. DSC can be defined as: 234

DSC(G, P) =
2|G ∩ P|
|G|+ |P| ,

where DSC(G, P) is the overlap between G and P, representing the ground truth and 235

the prediction, respectively. 236

The Jaccard index, also referred as Intersection over Union (IoU), computes the overlap 237

between the ground truth and prediction divided by the union of the two. 238

IoU(G, P) =
|G ∩ P|
|G ∪ P| ,

The HD measures the Euclidian distance between the points of the ground truth and 239

the segmentation set. The smaller the Hausdorff distance, the better the match between the 240

two sets. 241

HD(G, P) = max
gϵG

{min
pϵP

{d(g, p)}},

where g and p are points in sets G and P, respectively and d(g, p) is the distance 242

between points g and p. 243
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Figure 7. Four cases randomly taken from various datasets with different image quality. For each case,
we show at the top row the original brain MRI slice; in row 2, we have the ground truth contoured in
red, and in the last row, we show the prediction of the E-CATBraTS model coloured in green with the
Dice similarity coefficient (DSC).

4.3. Implementation Details 244

E-CATBraTS was implemented using MONAI framework [43]. All models were 245

trained with an initial learning rate of 5 × 10−5 on NVIDIA GeForce RTX 3080. Next, using 246

the CosineAnnealingLR scheduler [44], the initial learning rate is simultaneously decreased 247

by the following equation: 248

lrt = lrmin +
1
2
(lrmax − lrmin)(1 + cos(

Ecurr

Emax
π)),

where lrt is the learning rate computed at each validation using cosine annealing, 249

lrmax is the initial learning rate and lrmin represents the minimum learning rate, lrmax is the 250

maximum number of epochs, Ecurr is the number of epochs since the last restart, and π = 251

3.14. 252

The CosineAnnealingLR scheduler is an effective technique for gradually reducing 253

the learning rate during training. This scheduler facilitates a smooth adjustment, which 254

enhances the model’s performance and convergence. 255

Our proposed model employs the stochastic optimisation method AdamW, which 256

decays weight per the decoupling weight decay technique from the gradient update [45]. 257

AdamW demonstrates improved generalisation and yields better training loss, outperform- 258

ing similar methods. 259

We employ the Dice loss to train E-CATBraTS as it is widely used for handling 260

imbalanced data, and formulated by subtracting the DSC from 1 [46]. 261

5. Results 262

We trained and evaluated our proposed model and comparable state-of-the-art on four 263

MRI datasets. First, Table 1 highlights the results using the UCSF-PDGM dataset, for which 264
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we assessed the channel shuffle mechanism by dividing the channels into two and four 265

groups known as GRP. Our results demonstrate that, in both experiments, E-CATBraTS 266

outperformed the state-of-the-art, achieving a mean DSC of 0.795 and a standard deviation 267

of 0.034 (GRP=4), which is 3.8% higher than the nearest competitor, UNETR. For each 268

tumour subregion, E-CATBraTS raised the mean DSC to 0.722 for TC, 0.884 for WT and 269

0.778 for ET, a significant improvement that follows the same trend using the IoU and 270

HD performance metrics. In contrast, applying SegResNet to the same dataset scored the 271

lowest accuracy with a mean DSC of 0.673, including 0.651, 0.779, and 0.588 for TC, WT, 272

and ET, respectively. Next to the model that yields the most accurate results is E-CATBraTS, 273

achieving a mean DSC of 0.761 (GRP=2) and highlights that E-CATBraTS significantly 274

boosts 3D brain tumor segmentation by roughly 6% more than 3D CATBraTS, and achieves 275

higher statistical stability with a lower standard deviation to indicate enhanced robustness. 276

The performance of models UNETR and Swin UNeTR on the UCSF-PDGM dataset 277

were 0.757 and 0.749 in mean DSC, respectively. Figure 5 highlights the results of E- 278

CATBraTS in three cases with brain tumours of varying size, shape and location. For each 279

case, the top row depicts an image of the 3D brain reconstruction in the MRI scan, and for 280

every tumour subclass, the subsequent left and right columns compare the ground truth 281

and the predictions of our proposed model, respectively. 282

Table 1. Quantitative evaluation of proposed approach compared to the state-of-the-art on UCSF-
PDGM. Results presented as dice similarity coefficient (DSC) mean ± standard deviation (std). GRP
is the number of subgroups in channel shuffle.

Network

Metric Region SegResNet UNETR Swin UNetR 3D CATBraTS
E-CATBraTS

(GRP = 2)

E-CATBraTS

(GRP = 4)

DSC

Mean 0.673± 0.031 0.757± 0.045 0.749± 0.039 0.735± 0.038 0.761± 0.035 0.795± 0.034

TC 0.651± 0.073 0.694± 0.067 0.667± 0.048 0.667± 0.064 0.680± 0.044 0.722± 0.0589

WT 0.779± 0.027 0.833± 0.026 0.834± 0.033 0.802± 0.018 0.851± 0.023 0.884± 0.013

ET 0.588± 0.040 0.744± 0.054 0.748± 0.048 0.737± 0.045 0.753± 0.05 0.778± 0.043

Jaccard

Mean 0.551± 0.028 0.653± 0.050 0.645± 0.041 0.624± 0.038 0.659± 0.036 0.697± 0.039

TC 0.54± 0.074 0.586± 0.073 0.55± 0.043 0.552± 0.064 0.568± 0.037 0.612± 0.065

WT 0.659± 0.031 0.735± 0.032 0.746± 0.04 0.69± 0.022 0.761± 0.0305 0.803± 0.018

ET 0.455± 0.037 0.639± 0.056 0.641± 0.05 0.628± 0.044 0.649± 0.052 0.675± 0.046

Hausdorff

Mean 25.685± 4.238 25.755± 2.600 21.968± 5.591 25.783± 5.542 18.323± 5.883 13.918± 2.482

TC 22.404± 7.582 23.152± 4.408 23.909± 4.513 24.951± 5.816 20.768± 5.929 16.553± 2.684

WT 36.426± 5.929 33.393± 5.179 20.8± 7.744 30.48± 6.31 18.333± 6.156 15.748± 4.457

ET 18.226± 5.422 20.719± 5.665 21.194± 5.384 21.918± 6.532 15.866± 5.994 9.453± 2.238

Using the UPENN-GBM dataset, our proposed model yielded the best results in mean 283

DSC as presented in Table 2. Given two subgroups in the channel shuffle, E-CATBraTS 284

achieved the highest segmentation accuracy for TC (0.857) and ET (0.856) and surpassed 285

the performance of 3D CATBraTS by 4.7% overall. In contrast, the CNN-based SegResNet 286

trailed behind with the lowest score, a mean DSC of 0.751. They were followed by our 287

proposed method with four subgroups, UNETR and the Swin UNetR, with mean DSC: 288

0.850, 0.856, and 0.857, respectively. Figure 6 highlights different evaluations of E-CATBraTS 289

in three cases. 290

Using the EGD dataset, E-CATBraTS performed comparably to Swin UNetR as shown 291

in Table 3, in which case the latter scored less than 0.5% more than the former on WT, 292

achieving a mean DSC of 0.784. Our results show that E-CATBraTS scored an overall higher 293

accuracy than 3D CATBraTS in mean DSC of 0.780 and 0.732, respectively. 294

As highlighted in Table 4, our results indicate that 3D CATBraTS yielded better results 295

on the BraTS 2021 dataset than E-CATBraTS and other state-of-the-art models. When 296

comparing 3D CATBraTS to our proposed methodology, the former performed roughly 3% 297

better in mean DSC accuracy (0.809) than the latter (0.770). 298
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Table 2. Quantitative evaluation of proposed approach compared to the state-of-the-art on UPENN-
GBM. Results presented as dice similarity coefficient (DSC) mean ± standard deviation (std). GRP is
the number of subgroups in channel shuffle.

Network

Metric Region SegResNet UNETR Swin UNetR 3D CATBraTS
E-CATBraTS

(GRP = 2)

E-CATBraTS

(GRP = 4)

DSC

Mean 0.751 ± 0.009 0.856 ± 0.017 0.857 ± 0.019 0.824 ± 0.014 0.871 ± 0.014 0.850 ± 0.009

TC 0.789 ± 0.015 0.823 ± 0.024 0.811 ± 0.027 0.782 ± 0.021 0.857 ± 0.02 0.802 ± 0.015

WT 0.826 ± 0.008 0.891 ± 0.012 0.905 ± 0.013 0.854 ± 0.009 0.9 ± 0.012 0.909 ± 0.009

ET 0.637 ± 0.02 0.854 ± 0.02 0.855 ± 0.02 0.837 ± 0.019 0.856 ± 0.015 0.839 ± 0.012

Jaccard

Mean 0.623 ± 0.01 0.765 ± 0.025 0.769 ± 0.028 0.719 ± 0.019 0.790 ± 0.021 0.759 ± 0.012

TC 0.672 ± 0.02 0.718 ± 0.034 0.705 ± 0.041 0.665 ± 0.028 0.774 ± 0.028 0.693 ± 0.021

WT 0.713 ± 0.01 0.813 ± 0.017 0.835 ± 0.019 0.753 ± 0.012 0.828 ± 0.016 0.84 ± 0.014

ET 0.485 ± 0.019 0.763 ± 0.03 0.767 ± 0.03 0.739 ± 0.026 0.766 ± 0.021 0.744 ± 0.015

Hausdorff

Mean 13.649 ± 1.452 11.128 ± 4.426 7.320 ± 1.726 15.407 ± 7.867 7.093 ± 5.05 7.905 ± 2.143

TC 10.367 ± 1.794 11.872 ± 3.647 9.496 ± 1.36 13.768 ± 7.784 7.776 ± 6.171 10.727 ± 1.614

WT 19.904 ± 5.558 17.012 ± 11.923 7.366 ± 6.142 24.189 ± 11.635 9.273 ± 5.196 7.406 ± 4.835

ET 10.677 ± 1.793 4.501 ± 0.795 5.097 ± 1.154 8.263 ± 5.56 4.23 ± 5.711 5.583 ± 0.773

Table 3. Dice similarity coefficient (DSC) mean ± standard deviation (std) on EGD.

Network

Metric Region SegResNet Swin UNetR 3D CATBraTS E-CATBraTS

DSC WT 0.738 ± 0.022 0.774 ± 0.026 0.732 ± 0.032 0.768 ± 0.024

Jaccard WT 0.625 ± 0.024 0.661 ± 0.031 0.616 ± 0.034 0.658 ± 0.032

Hausdorff WT 41.790 ± 8.125 38.313 ± 8.024 44.999 ± 7.836 34.255 ± 8.341

Compared to the other models, E-CATBraTS has outperformed both SegResNet and 299

Swin UNeTR by around 2% than the nearest model. 300

Evaluating the performance of E-CATBraTS with HD metric shows a lower score than 301

the other models on UCSF-PDGM, UPENN-GBM, and EGD datasets, indicating that our 302

proposed model has better segmentation of the tumour boundaries and its components. 303

Moreover, several ablation studies were conducted to demonstrate the importance 304

of the Channel shuffling and channel attention modules in improving the generalisation 305

capabilities and segmentation accuracy of E-CATBraTS. The results were compared to 306

E-CATBraTS on the four datasets and evaluated using DSC, IoU, and HD metrics. The 307

results of the ablation experiments are shown in Table 5. It is clear from the results that the 308

addition of the channel shuffling and channel attention modules has increased the accuracy 309

and stability of the model, which was validated using the three evaluation metrics. 310

6. Discussion 311

Our main goal in developing E-CATBraTS is to precisely identify and segment 3D 312

brain tumours in MR images that could be affected by artefacts. We also aim to ensure 313

that our proposed DL model exhibits statistical stability when applied to various datasets 314

acquired through different imaging protocols. As such, we evaluated E-CATBraTS on four 315

datasets generated at multiple medical centres: UCSF-PDGM, UPENN-GBM, EGD, and 316

BraTS 2021. To the best of our knowledge, this is the first study to develop and apply a DL 317

model on the aforementioned multi-site, multi-modal brain MRI datasets. 318

The results of this study, as presented in Section 5, demonstrate that E-CATBraTS 319

outperforms the current state-of-the-art methods, including Swin UNetR and the leveraged 320

3D CATBraTS approach. Our proposed novel model generates more robust segmentations 321

across all tested datasets compared to the other competing models. There are several 322

explanations for this outcome: first, we perform channel shuffling for the embedded 323
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Table 4. Segmentation results of E-CATBraTS compared to the current state-of-the-art trained on the
BraTS 2021 and evaluated on the UCSF-PDGM datasets.

Network

Metric Region SegResNet Swin UNetR 3D CATBraTS E-CATBraTS

DSC

Mean 0.724 ± 0.059 0.751 ± 0.047 0.809 ± 0.033 0.770 ± 0.080

TC 0.737 ± 0.084 0.682 ± 0.084 0.784 ± 0.045 0.726 ± 0.102

WT 0.818 ± 0.016 0.823 ± 0.021 0.851 ± 0.03 0.802 ± 0.032

ET 0.616 ± 0.087 0.748 ± 0.055 0.792 ± 0.03 0.781 ± 0.154

Jaccard

Mean 0.606 ± 0.054 0.648 ± 0.053 0.716 ± 0.04 0.658 ± 0.072

TC 0.630 ± 0.077 0.576 ± 0.093 0.690 ± 0.054 0.613 ± 0.098

WT 0.709 ± 0.021 0.726 ± 0.025 0.766 ± 0.034 0.696 ± 0.043

ET 0.480 ± 0.073 0.643 ± 0.059 0.692 ± 0.037 0.666 ± 0.132

Hausdorff

Mean 18.372 ± 9.995 31.620 ± 4.594 10.034 ± 2.136 13.627 ± 2.284

TC 12.671 ± 11.545 23.667 ± 6.574 9.474 ± 2.286 9.723 ± 1.651

WT 29.155 ± 7.718 50.733 ± 5.304 13.709 ± 4.411 24.559 ± 6.921

ET 13.291 ± 11.915 20.461 ± 7.383 6.919 ± 2.164 6.598 ± 1.783

patches prior to downsampling. Channel shuffling was initially introduced to help reduce 324

computational costs in object detection tasks involving mobile applications with insufficient 325

resources [47]. Thus, when integrated into our proposed model, the shuffling operates as 326

a DL network regulariser, enabling the cross-flow of contextual information between the 327

T1, T1Gd, T2, and T2-Flair channels by randomly swapping their patches, which improves 328

the model’s generalisation capabilities. Each MRI modality provides excellent soft-tissue 329

contrast to highlight tumour subregions of interest, primarily as the intersection between 330

the modalities generates more precise insight into the tumour subregions. 331

Furthermore, the proposed enhanced CAT encoding block supports our novel model, 332

achieving higher segmentation accuracy and statistical stability. This block contains a single 333

3D convolution that is normalised using the batch function and then processed through a 334

channel attention block. Employing a channel attention module has significantly improved 335

the accuracy and robustness of E-CATBraTS without adding expensive computations to 336

the model. As mentioned in section 3, the channels have a different impact on each class. 337

Accordingly, we weigh each channel based on its contribution using an average pooling 338

layer followed by two fully connected layers. 339

Overall, the accuracy of our proposed model’s predictions is impacted by the charac- 340

teristics of the brain tumour and the quality of the input MR image. Brain tumours vary 341

significantly in shape, size, and location, influenced by several factors such as the tumour 342

type and grade and patient age and sex. Such variation and inconsistency in structure 343

and position further challenge the DL model’s ability to identify the tumour of interest 344

accurately. Moreover, the extent to which an MR image exhibits artefacts plays a vital role 345

in the reliability of the resultant segmentation prediction. The quality of an input MR image 346

relies upon, but is not limited to, image acquisition, storage and transmission processes. 347

Artefacts can also hinder the reliability of an MRI case, including image anomalies caused 348

by software, hardware, pulse sequences or patient movement. 349

Figure 7 highlights E-CATBraTS’ resultant segmentation in a randomly selected case 350

from each of the four datasets, illustrating the variation in image quality across the datasets. 351

While the top row shows a single slice from an MRI brain scan, the middle and bottom 352

row shows the ground truth and our proposed model’s prediction, respectively. Typically, 353

bigger tumours, as in Case 3, Figure 7, achieve higher segmentation results than their 354

smaller counterparts, as in Case 0. Contrary to expectations, the latter outperforms in 355
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Table 5. Ablation study of the proposed model on four datasets: UCSF, UPENN, EGD, and BraTS
2021.

Network

Metric Datasets E-CATBraTS No Attention No Shuffle No Shuffle No Attention

DSC

UCSF 0.795 ± 0.034 0.745 ± 0.033 0.762 ± 0.031 0.719 ± 0.041

UPENN 0.871 ± 0.014 0.854 ± 0.010 0.859 ± 0.021 0.836 ± 0.02

EGD 0.768 ± 0.024 0.753 ± 0.037 0.755 ± 0.028 0.740 ± 0.034

BraTS 2021 0.770 ± 0.080 0.724 ± 0.047 0.707 ± 0.037 0.709 ± 0.052

Jaccard

UCSF 0.697 ± 0.039 0.640 ± 0.031 0.657 ± 0.032 0.605 ± 0.044

UPENN 0.790 ± 0.021 0.765 ± 0.013 0.775 ± 0.030 0.741 ± 0.03

EGD 0.658 ± 0.032 0.639 ± 0.034 0.639 ± 0.032 0.625 ± 0.035

BraTS 2021 0.658 ± 0.072 0.615 ± 0.051 0.596 ± 0.035 0.603 ± 0.053

Hausdorff

UCSF 13.918 ± 2.482 17.461 ± 2.600 25.196 ± 3.243 33.820 ± 4.635

UPENN 7.093 ± 5.05 8.769 ± 2.250 6.609 ± 1.898 6.711 ± 1.241

EGD 34.255 ± 8.341 40.145 ± 8.628 39.773 ± 7.702 46.015 ± 8.462

BraTS 2021 13.627 ± 2.284 23.249 ± 3.504 18.341 ± 2.524 14.272 ± 2.964

accuracy compared to the former, scoring 95.97% DSC versus 61.9% DSC. Such an outcome 356

underlines the image quality of the datasets in question, with UPENN containing scans 357

with lower image degradation than the EGD dataset. 358

The results obtained from the ablation study clearly demonstrate the contribution 359

of the proposed techniques: the channel shuffle and the channel attention mechanisms. 360

As shown in Table 5, the model’s accuracy significantly improves when both components 361

are included. Conversely, the model performs poorly across all datasets when either or 362

both components are omitted. This can be attributed to the positive impact of channel 363

shuffling, which enhances the model’s convergence and enables it to learn more detailed 364

features. Additionally, the channel attention mechanism allows the model to focus on the 365

most relevant features, as previously mentioned. 366

As detailed in this paper, our findings carry significant implications for developing DL 367

models tailored towards other medical imaging tasks, such as segmenting breast lesions, 368

bone tumours and organ tumours such as lung and pancreatic cancer. The generalisability 369

of the E-CATBraTS model could also extend towards heart segmentation to assess the risk 370

of cardiovascular diseases and detect various fetal cardiac anomalies. 371

Having trained and evaluated E-CATBraTS across four different datasets under the 372

same experimental setup, we have shown that our novel model achieves robust and 373

statistically stable results, potentially forming the basis for an investigation into other 374

biomedical image segmentation tasks and employed by the clinical research community to 375

assess and better understand graded brain tumours using large-scale MRI data. 376

Although the study has successfully achieved higher accuracy and shown improved 377

generalisability across various datasets, it is important to acknowledge certain limitations. 378

To better reflect real clinical scenarios, other brain imaging protocols, such as CT scans - 379

which are a more cost-effective alternative to MRIs - should have been considered. However, 380

this was not feasible due to the limited availability of public resources that provide labelled 381

CT scan datasets. Additionally, there is a need for more diverse datasets to prevent biases 382

against specific tumour types. 383

7. Conclusion 384

This paper proposes E-CATBraTS, a novel deep learning model for a 3D brain tumour 385

segmentation model in MRI volumes. Our model improves upon 3D CATBraTS, which 386

originally outperformed state-of-the-art methods in the BraTS 2021 challenge validation 387

phase. E-CATBraTS was trained on four different datasets to exploit contextual information 388

using channel shuffling, thereby enhancing the information exchange and interaction 389
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between feature channels. This component allows the network to learn more complex 390

information while also helping to prevent overfitting. In addition to channel shuffling, we 391

incorporated a channel attention module in the encoding block that assigns weights to each 392

channel based on its importance. This mechanism enables the network to focus on the most 393

significant features, ultimately optimising its accuracy. Through our experiments, We have 394

demonstrated that E-CATBraTS raises the segmentation accuracy and statistical stability, 395

which helps in the early diagnosis of brain tumours. compared to state-of-the-art models 396

Swin UNetR, SegResNet, UNetR, and 3D CATBraTS, using the UCSF-PDGM and UPENN- 397

GBM datasets. Furthermore, using the EGD dataset, our results were comparable to the 398

highest accuracy obtained by Swin UNetR. A natural progression of this work is to assess 399

the model in a real clinical setup, which could provide more reliable evidence. Further 400

work will aim to evaluate E-CATBraTS using other imaging acquisition methods, including 401

computed tomography (CT) and positron emission tomography (PET). This approach will 402

not only enhance the robustness of the findings but also ensure that the model can be 403

adapted to various imaging technologies commonly used in clinical practice. Another 404

aspect of future research includes investigating the accuracy and broader generalisability 405

of E-CATBraTS for other biomedical segmentation tasks, such as segmentation of lung, 406

pancreatic, prostate and breast tumours. 407
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