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Abstract. Homomorphic Encryption (HE) is a modern cryptographic
technique that allows direct computations on encrypted data. While rel-
atively new to the mainstream debate, HE has been a solid topic in
research for decades. However, and despite the technological advances
of the past years, HE’s inefficiencies render it impractical for deploy-
ment in realistic scenarios. Hence research in the field is still in its initial
phase. To overcome certain challenges and bring HE closer to a real-
ization phase, researchers recently introduced the promising concept of
Hybrid Homomorphic Encryption (HHE) – a primitive that combines
symmetric cryptography with HE. Using HHE, users perform local data
encryptions using a symmetric encryption scheme and then outsource
them to the cloud. Upon reception, the cloud can transform the symmet-
rically encrypted data to homomoprhic ciphertexts without decrypting
them. Such an approach can be seen as an opportunity to build new,
privacy-respecting cloud services, as the most expensive operations of
HE can be moved to the cloud.
In this work, we undertake the task of designing a secure cyrptographic
protocol based on HHE. In particular, we show how HHE can be used
as the main building block of a protocol that allows an analyst to collect
data from multiple sources and compute specific functions over them, in
a privacy-preserving way. To the best of our knowledge, this is the first
work that aims at demonstrating how HHE can be utilized in realistic
scenarios, through the design of a secure protocol.

Keywords: Homomorphic Encryption · Hybrid Homomorphic Encryp-
tion · Multi-Client · Storage Protection

1 Introduction

Cloud computing has become an integral part of our lives. It has not only im-
pacted our daily functions but also how businesses and organizations manage
their data and customers. The wide use of cloud-services has, as expected, raised
a plethora of challenging security and privacy problems. One of the main security
concerns related to cloud computing has to do with so-called internal attacks.
This is, a corrupted cloud service provider (CSP) exploiting customer data for
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its own benefit, e.g. sharing customer data with third parties. To alleviate these
concerns CSPs have introduced support for data encryption. However, the prob-
lem of creating real privacy-respecting cloud services is not as easy as applying
encryption on the stored data. For this reason, the research community has
started looking into solutions that are not based on traditional encryption and
can successfully protect user data from internal attacks without jeopardizing
the main benefits of cloud computing. One of the most common solutions is
Structured Encryption (SE) [18], where data is encrypted locally with a key
that is unknown to the CSP. Hence, the CSP, which does not have access to the
encryption key cannot learn anything about the content of user data. Further-
more, whenever a user wishes to access her files, she can search directly over
the encrypted data for specific keywords. While this approach solves part of the
problem, (i.e. users do not have to download and decrypt the whole database),
ciphertexts remain “useless” in the sense that one can not operate on them as
if as they were plaintexts. With a view to addressing this issue, a number of
approaches to make ciphertexts “more useful” and operate on encrypted data
have been developed. The most promising solutions is Homomorphic Encryption
(HE) [23] and Functional Encryption [16] – two modern encryption techniques
that allow authorized entities (i.e. users, the cloud or third parties) to perform
computations on the encrypted data without accessing their contents.

Homomorphic encryption, often dubbed as “the holy grail of cryptography”.
In an HE scheme a user first generates a public/private key pair (pk, sk) and
an evaluation key evk3. Then, given two ciphertexts c1, c2 encrypting messages
x1 and x2 respectively and the evaluation key evk, it is possible to compute
f(c1, c2), where f is a function associated either with addition or multiplication.
Moreover, what is fascinating about HE, is that in computing f(c1, c2) there
are no leaks about the underlying plaintexts x1 and x2 while decrypting the
result in only feasible by possessing the secret key sk. Naturally, this opens up
tremendous possibilities as, for the first time ever, it becomes possible to not only
outsource data, applications and services but also computations to the cloud, in a
privacy-preserving manner. However, despite its advantages, HE is unfortunately
characterized by its inefficiency. Homomorphically encrypting big loads of data
requires powerful machines and is time-consuming. As a result, to this day HE
is a topic of interest mainly among members of the academic community. To
address these inefficiencies however, researchers recently turned their attention
to Hybrid Homomorphic Encryption (HHE) [10].

In an HHE scheme, a user encrypts data locally using a symmetric key K of a
symmetric-key encryption scheme SKE. Subsequently, K is encrypted under HE’s
public key pk and is outsourced to the cloud along with the ciphertexts and the
evaluation key evk. Upon reception, the CSP can transform the symmetrically
encrypted data to homomorphic ciphertexts and hence operate on them. This
promising approach significantly reduces computation costs on the client side by
moving the most expensive computations on the cloud, where powerful machines
are used traditionally for the processing and storage of the data. In this work,

3 Sometimes, in literature, the evaluation key is part of the public key.
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while we do not design a novel HHE scheme, we design a detailed protocol
that aims at showing the applicability and functionality of HHE in real-world
scenarios.

Contributions: While multiple different HHE schemes have been proposed over
the past few years, to the best of our knowledge, none of these describe in detail
how HHE can be used as the main building block of a secure protocol or how
this promising concept can be used effectively to

We formally design two protocols that allow an autho- rized entity (e.g. an
analyst) to process encrypted data in an efficient way as if they were unecrypted.

. We believe this is an important step forward that can bridge the gap between
theoretical cryptographic concepts and security engineering and can pave the
way for the implementation of a vast amount of privacy-respecting cloud services.
The contributions of this work can be summarized as follows:

C1. We design a protocol that utilizes the concept of HHE and allows multiple
users to securely store and process their data in the cloud.

C2. We provide an efficient and novel way of using HE to securely store and
analyze data stored in a remote location. More precisely, our scheme can
run in any device that can run a typical symmetric encryption algorithm.

C3. We prove the security of our protocol in the presence of a malicious adversary
modelled after the Dolev-Yao adversarial model [12].

C4. Our theoretical evaluation, is coupled with extensive experimental results
that prove our protocol’s efficiency and applicability.

2 Related Work

– Homomorphic Encryption: While HE has attracted a lot of attention in
the recent years, it was first mentioned by Rivest et al. in 1978 [23]. How-
ever, the first HE constructions allowed only for one specific operation on
encrypted data. The operation could either be addition, using the Paillier
cryptosystem [22], or multiplication, under RSA [24]. It was not until 2009
and the work of Gentry that the first fully homomorphic encryption (FHE)
scheme was developed [14]. This was a major breakthrough in the field of
cryptography as, in theory, by using a FHE scheme one can perform any
operation directly on encrypted data. While fascinating, this work was un-
fortunately characterized by its inefficiency. However, it produced a series of
publications in the field [2,13,3,7,6]. These works addressed the impractical-
ities of Gentry’s work and lead to novel and more efficient schemes.

– Hybrid Homomorphic Encryption: HHE was first introduced as a con-
cept in [21], but the first formal definition was presented very recently in [11].
The first approaches for the design of HHE schemes, relied on existing and
well-established symmetric ciphers, like AES [15,5,9]. However, AES was
not a good suitor for building HHE schemes, mainly due to its large multi-
plicative depth. Thus, research on the field of HHE took a new turn where
the main focus has been shifted to the design of symmetric ciphers with
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different optimization criteria, depending on the use-case each work ad-
dresses [8,1,4,10,20,17,11]

– Provable Secure Protocols for Cloud Security using HHE : To the
best of our knowledge, this is the first work that aims at designing a provable
secure protocol leveraging the functionality of HHE.

3 Preliminaries

Notation If Y is a set, we use y
$←− Y if y is chosen uniformly at random from Y.

Concatenation of two strings x, y is denoted by x∥y. A probabilistic polynomial
time (PPT) adversary ADV is a randomized algorithm for which there exists a
polynomial p(z) such that for all input z, the running time of ADV(z) is bounded
by p(|z|). A function negl(·) is called negligible if ∀ c ∈ N,∃ ϵ0 ∈ N such that
∀ ϵ ≥ ϵ0 : negl(ϵ) < ϵ−c.

Definition 1 (Homomorphic Encryption). A (public-key) homomorphic en-
cryption scheme is a quadruple of PPT algorithms HE = (HE.KeyGen,HE.Enc,HE.Dec,HE.Eval)
such that:

– Key Generation: The Key Generation algorithm (pk, evk, sk)← He.Keygen(1λ)
takes as input a unary representation of the security parameter λ, and out-
puts a public key pk, a public evaluation key evk and a secret decryption key
sk.

– Encryption: This algorithm c← HE.Enc(pk,m) takes as input the public
key pk and a message m and outputs a ciphertext c.

– Decryption: This algorithm m ← HE.Dec(sk, c), takes as input the secret
key sk and a ciphertext c, and outputs a plaintext m.

– Homomorphic Evaluation: This algorithm cf ← He.Eval(evk, f, c1, . . . , cn)
takes as input the evaluation key evk, a function f , and a set of n ciphertexts,
and outputs a ciphertext cf .

Correctness: An HE scheme is said to be correct if and only if:

(1)Pr[HE.Decsk (HE.Evalevk (f, c)) ̸= f(m)|HE.Encpk (m) = c] ≤ negl(λ)

Before we proceed with the formal definition of HHE, we discuss its func-
tionality at a high-level. An HHE scheme is built on top of a traditional HE
scheme as well as a symmetric cipher SKE. The Key Generation algorithm of
HHE invokes the corresponding algorithms of both the HE and SKE and out-
puts (pk, sk, evk) for the HE scheme, and K for the SKE scheme. As a next step,
the Encryption algorithm takes as input a message m, HE’s public key pk, and
K. The message m will be encrypted symmetrically using K, resulting to a ci-
phertext c. Moreover, the symmetric key K will be homomorphically encrypted
under pk, resulting to another ciphertext cK. These two ciphertexts will then be
given as input, along with the decryption function of SKE, to HHE’s Decom-
pression algorithm. This algorithm homomorphically performs the symmetric
decryption circuit to transform the symmetric ciphertext c into a homomorphic
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ciphertext c′, by invoking the evaluation algorithm of the HE scheme. Finally,
the evaluation and decryption algorithms of HHE, are identical to those of the
HE scheme.

Definition 2 (Hybrid Homomorphic Encryption). Let HE be a Homomor-
phic Encryption scheme and SKE = (Gen,Enc,Dec) be a symmetric-key encryp-
tion scheme. Moreover, let M = (m1, . . . ,mn) be the message space and λ the
security parameter. An HHE scheme then consists of five PPT algorithms such
that HHE = (KeyGen,Enc,Decomp,Eval,Dec) and it is constructed as follows:

HHE.KeyGen(1λ):

(pk, sk, evk)← HE.KeyGen(1λ)
Return (pk, sk, evk)

HHE.Enc:
K← SKE.Gen(1λ)
cK ← HE.Enc(pk,K)
c← SKE.Enc(K,m)
Return (cK, c)

HHE.Decomp(evk, c, cK):

c′ ← HE.Eval(evk, SKE.Dec, cK, c)
Return c′

HHE.Eval(evk, f, c′1, . . . , c
′
n):

Return HE.Eval(evk, f, c′1, . . . , c
′
n)

HHE.Dec(sk, c′) :

Return HE.Dec(sk, c′)

Fig. 1: Hybrid Homomorphic Encryption Scheme

The correctness of an HHE scheme follows directly from the correctness of
the underlying public-key HE scheme.

For the security of HHE we rely on the following theorem that was first
proved for the KEM/DEM paradigm in [19], and then later modified for HHE
in [11]:

Theorem 1. Let HE be an IND-CPA secure public-key homomorphic encryption
scheme. Moreover, let SKE be an IND-CPA secure symmetric-key encryption
scheme. Then the HHE scheme instantiated by HE and SKE is IND-CPA secure.

4 Architecture

For the needs of our construction, we assume the existence of the following three
entities:

– Cloud Service Provider (CSP): An honest-but-curious cloud service
provider that is primarily responsible for gathering symmetrically encrypted
data from multiple sources. The CSP undertakes the task of transforming
the symmetrically encrypted data to homomorphic ciphertexts and, upon
request, operate on them in a blind way.
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– Analyst (A): The analyst is an entity that wishes to perform computations
on the data of various users. A is the only entity in our construction that
can perform the homomorphic decryption and thus, gain insights from user
data.

– Users (U): Users encrypt their data locally using a symmetric-key encryp-
tion scheme and outsource them to the CSP.

5 Symmetrical Disguise

Before we proceed with the formal construction of the scheme, we provide a
high-level overview.

5.1 High-Level Overview

An analyst A generates (pk, sk, evk) for the HHE scheme, outsources evk to the
CSP and publishes pk. As a next step, each user ui (ui ∈ U), can generate a
symmetric key locally, encrypt their data, and outsource them to the CSP along
with a homomorphic encryption of the symmetric key under A’s public key. Upon
reception, the CSP transforms the symmetric ciphertexts to homomorphic, and
stores them online in its database. A can request the evaluation of a function f
on the collection of the ciphertexts from the CSP. The CSP uses evk and outputs
an encrypted result which then sends back to A. Finally, A decrypts the result
using their secret key sk.

5.2 Formal Construction

We are now ready to present SD that constitutes the core of this paper’s contri-
bution. For the realization of our construction we rely on the following building
blocks:

– An IND-CPA secure symmetric cipher SKE = (Gen,Enc,Dec).
– An IND-CPA secure homomorphic encryption scheme HE = (KeyGen,Enc,Dec,Eval).
– A CCA2 secure public-key encryption scheme PKE = (Gen,Enc,Dec)
– An EUF-CMA secure signature scheme S = (sign, ver).
– A first and second pre-image resistant hash function H.

SD is built around three main protocols: Setup,Add,Query such that:

SD.Setup: Each entity from the described architecture generates a signing/verification

key pair for an EUF-CMA secure signature scheme S and publishes its verifi-
cation key while keeping the signing key private. Apart from that, the CSP,
generates a public/private key pair (pk, sk) for a CCA2-secure public-key en-
cryption scheme PKE. Finally, the analyst A runs HHE.KeyGen to generate the
public, secret and evaluation keys for an IND-CPA secure homomorphic encryp-
tion scheme HE, and each user ui runs SKE.KeyGen to generate a symmetric key
Ki for an IND-CPA secure symmetric cipher SKE. Below we provide a list of the
generated keys:
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– Signing/Verification keys for each entity.
– (pkCSP, skCSP): Public/private key pair of the CSP.
– (pkA, skA, evkA): Public/private/evaluation keys of A.
– Ki: Symmetric key for each user ui.

Once the keys are generated, A outsources its evaluation key evk to the CSP
via m1 = ⟨t1,Enc(pkCSP, evk), σA(H(t1||evk)))⟩, where t1 is a timestamp, σA is
a signature encrypted with A’s private key, and H is a hash function. Upon
reception, the CSP verifies the signature of A, using A’s verification key, and
the freshness of the message through the timestamp. If a verification fails, the
CSP aborts the protocol and outputs ⊥. Otherwise, the CSP stores evkA.

SD.Add: This protocol is initiated by any user ui ∈ U that wishes to out-
source some data x = (x1, . . . , xn) to the CSP. To do so, ui first runs ci ←
SKE.Enc(Ki, xi). As a next step, ui, homomorphically encrypts is symmetric key
Ki under A’s public key, by running cKi

← HE.Enc(pkA,Ki). Finally, the (c, cKi
)

pair is outsourced to the CSP via the following message:

m2 = ⟨t2, c = (ci, . . . , cn), cKiσui(H(t2∥c∥cKi))⟩.

Upon receiving m2, the CSP verifies the freshness and integrity of the message.
If the verifacation fails, CSP outputs ⊥. Otherwise, it transforms the symmetric
ciphertext ci to a homomorphic one, by running c′i ← HHE.Decomp(ci, cKi

, evkA).
Finally, the CSP stores c′i in its database.

SD.Query: The Query protocol is initiated by A whenever she wishes to is-

sue a query to the encrypted data for a function f . To do so, A sends m3 =
⟨t3,Enc(pkCSP, f), σA(H(t3∥f)⟩) to the CSP. Upon reception, the CSP verifies
both the integrity and the freshness of the message. If the verification fails,
the CSP will abort the protocol and output the error symbol ⊥. Otherwise, it
runs HHE.Eval(f, evkA, c

′
1, . . . , c

′
n) → cres to get an encrypted result cres. Due to

the homomorphic properties of the encryption scheme HE, the encrypted result
cres can be viewed as an encrypted version of f(x′

1, . . . , x
′
n), where each x′

i corre-
sponds to a ciphertext c′i, and that can only be dercypted using A’s secret key sk.
Subsequently, the CSP forwards cres to A via m4 = ⟨t4, cres, σCSP (H(t4∥cres))⟩.
Upon reception, A verifies both the integrity and the freshness of the message.
If a verification fails, A aborts the protocol and outputs ⊥. Otherwise, they run
HHE.Dec(sk, cres) → res to retrieve the result res. Having acquired the result
in plaintext, A can use it to perform statistics or data analysis, in a privacy-
preserving manner, since she never got access to the actual plaintexts. Our pro-
tocol is illustrated in Figure 2.

6 Threat Model

In this section, we define the threat model under which we prove the security
of SD. More specifically, we formalize the capabilities of the adversary ADV
through the following set of possible attacks:
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Analyst A User ui CSP

Run HHE.KeyGen

Run SKE.KeyGen

Ki

(pkA, skA, evkA)

m1 = ⟨t1,Enc(pkCSP, evk), σA(H(t1∥evk)))⟩

Run HE.Enc(pkA,Ki)

cKi

m2 = ⟨t2, c = (ci, . . . , cn), cKiσui(H(t2∥c∥cKi))⟩.

Run HHE.Decomp

c′ = (c′1, . . . , c
′
n)

m3 = ⟨t3,Enc(pkCSP, f), σA(H(t3∥f)⟩)

Run HHE.Eval

cres

m4 = ⟨t4, cres, σCSP (H(t4∥cres))⟩

Run HHE.Dec

res

Fig. 2: Complete run of our protocol with one user ui. More users would behave
exactly like ui.
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Attack 1 (Analyst Substitution Attack) Let ADV be a malicious adver-
sary. ADV successfully performs an Analyst Substitution Attack if she manages
to convince the users that their data are processed for the needs of an analyst A,
while in reality they are processed for an analyst AADV .

Attack 2 (Ciphertext Substitution Attack) Let ADV be a malicious ad-
versary. ADV successfully launches a Ciphertext Substitution Attack if she man-
ages to replace the ciphertexts sent by users to the CSP in an indistinguishable
way.

Attack 3 (Query Substitution Attack) Let ADV be a malicious adversary.
ADV successfully launches a Query Substitution Attack if she manages to replace
the query sent by A to the CSP, with another one of her choice, in an indistin-
guishable way.

Attack 4 (Result Substitution Attack) Let ADV be a malicious adversary.
ADV successfully launches a Result Substitution Attack if she manages to replace
the result sent by the CSP to the analyst A, in an indistinguishable way.

In our threat model, we assume that the CSP cannot collude with the Analyst
A. This is a valid assumption as otherwise we would be required to prove security
in a setting where the decryption keys are publicly-available.

7 Security Analysis

We are now ready to prove the security of our construction assuming the threat
model defined in section 6. In particular, we will prove the following theorem:

Theorem 2 (SD Security in the presence of Malicious Adversaries).
Let PKE be an INC-CPA secure public-key encryption scheme and S an EUF-
CMA secure signature scheme with security parameter λ. Moreover, let SKE be
an IND-CPA secure symmetric-key encryption scheme with security parameter
κ. Finally, let ADV be a malicious adversary. Then, SD is secure against the
threat model defined in section 6.

Proof. To prove Theorem 2, we will start with a sequence of lemmas. Then, we
will combine our results to derive a proof for the main theorem.

Lemma 1 (Analyst Substitution Attack Soundness). Let PKE be an INC-
CPA secure public-key encryption scheme. Moreover, let S be an EUF-CMA
secure signature scheme and ADV a malicious adversary. In this case ADV
cannot successfully launch an Analyst Substitution Attack against SD.

Proof. ADV will successfully launch an Analyst Substitution Attack, by target-
ing either the SD.Setup or the SD.Add protocol. To this end, we distinguish the
following cases:
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C1: Attacking SD.Setup: To perform an attack against SD.Setup, ADV needs
to swap the evaluation key of A, evkA, with an evaluation key evkAADV ,
for an analyst AADV such that A ̸= AADV . To this end, ADV targets the
m1 = ⟨t1,Enc(pkCSP, evk), σA(H(t1∥evk)))⟩ message sent from A to the CSP
and tries to swap evkA with evkAADV . Generating a valid EncpkCSP(evk

′
A) is

straightforward for ADV as pkCSP is publicly known. However, swapping
evkA for evk′A in the σA(H(t1||evk)) term, is equivalent with forging A’s sig-
nature, and given the EUF-CMA security of the signature scheme S, this can
only happen with negligible probability. More specifically, if λ is the security
parameter of S, then the advantage ϵ1 of ADV is successfully tampering with
m1 in an indistinguishable way is:

(2)ϵ1 = negl(λ)

C2: Attacking SD.Add: Another option for ADV is to target

m2 = ⟨t2, c = (ci, . . . , cn), cKiσui
(H(t2∥c∥cKi))⟩.

The motivation for this attack is to use user data for an analyst AADV

while the users believe that their data will be processed for an analyst A.
Recall that cKi is generated as cKi

← HE.EncpkA(Ki). Hence, for ADV to
successfully attack this protocol, they need to simultaneously satisfy the
following three conditions:

(a) Guess the symmetric key Ki;
(b) Encrypt it with the public key of another analyst AADV ;
(c) Tamper with m2 in an indistinguishable way.

However, assuming that the symmetric cipher SKE is IND-CPA secure, the
probability of correctly guessing the key (e.g. brute force attack) is negligible
in the security parameter κ of SKE. Hence, if the advantage of ADV in
guessing they key is ϵ2:

(3)ϵ2 = negl(κ)

Since condition (1) can never be fulfilled, except with negligible probability,
there is no need to separately examine conditions (2) and (3).

Hence, we conclude that in every case, ADV can successfully launch an An-
alyst Substitution Attack with only negligible probability.

Lemma 2 (Ciphertext Substitution Attack Soundness). Let PKE be an
INC-CPA secure public-key encryption scheme. Moreover, let S be an EUF-CMA
secure signature scheme and ADV a malicious adversary. Then ADV cannot
successfully launch a Ciphertext Substitution Attack against SD.

In contrast with the previous attack that aimed at processing real user data,
this attack aims at substituting the actual ciphertexts (c1, . . . , cn) with a se-
quence of data (c′1, . . . , c

′
n) generated by ADV. By succeeding in this attack,

ADV can control the outcome of a query to the CSP and hence, manipulate the
analyst A.
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Proof. Successfully performing a Ciphertext Substitution Attack, requires at-
tacking the SD.Add protocol. More precisely, when a user ui outsources their
data to the CSP via m2 = ⟨t2, c = (ci, . . . , cn), cKiσui(H(t2∥c∥cKi))⟩, ADV needs
to substitute c = (ci, . . . , cn) with c′ = (c′1, . . . , c

′
n). Apart from that ADV needs

to generate a cK′ term where K′ is the key used to encrypt c′. More precisely,
ADV needs to successfully:

1. Generate a symmetric key KADV ;
2. Use K′ to generate a sequence of ciphertexts c′ = (c′1, . . . , c

′
n);

3. Encrypt KADV with pkA to get cKADV ;
4. Tamper with m2 in an indistinguishable way.

Conditions (1), (2) and (3) are trivial to achieve. Moreover, substituting c
with c′ and cKi with cK in the first part of m2 is straightforward. However, these
terms are also included in the signature and hence, successfully substituting the
terms is equivalent to forging ui’s signature. Given the EUF-CMA security of
the signature scheme S, this can only happen with negligible probability in the
security parameter λ of S. As a result, the advantage ϵ2 in tampering with m2

in an indistinguishable way is:

(4)ϵ3 = negl(λ)

Lemma 3 (Query Substitution Attack Soundness). Let PKE be an INC-
CPA secure public-key encryption scheme. Moreover, let S be an EUF-CMA
secure signature scheme and ADV a malicious adversary. Then ADV cannot
successfully launch a Query Substitution Attack against SD.

Proof. For ADV to successfully perform a Query Substitution Attack, they
need to attack the SD.Query protocol. More precisely, when A sends m3 =
⟨t3,Enc(pkCSP, f), σA(H(t3∥f)⟩) tries to substitute the function f with another
function f ′ of their choice. Since f is encrypted with the public key of the CSP
pkCSP, ADV simply needs to encrypt f ′ under pkCSP as well. However, f is also
included in the signature part of m3 and hence, tampering with m3 requires forg-
ing AADVs signature. Given the EUF-CMA security of the signature scheme S
this can only happen with negligible probability in the security parameter λ of S.
As a result, ADV’s advantage ϵ4 is in tampering with m3 in an indistinguishable
way is:

(5)ϵ4 = negl(λ)

Lemma 4 (Result Substitution Attack Soundness). Let PKE be an INC-
CPA secure public-key encryption scheme. Moreover, let S be an EUF-CMA
secure signature scheme and ADV a malicious adversary. Then ADV cannot
successfully launch a Result Substitution Attack against SD.

Proof. The proof is identical to that of Lemma 3 with the main difference being
that ADV targets m4 instead of m3. Hence, following the exact same reasoning
as in the proof of Lemma 3, we conclude that the advantage ϵ5 of ADV is in
tampering with m4 in an indistinguishable way is:

(6)ϵ4 = negl(λ)
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Having examined each possible attack separately, what remains to be done is
to prove that the overall advantage ϵtotal of ADV is negligible. Given the security
parameter λ and grouping up the results from equations 2- 6 we get that:

(7)
ϵtotal = ϵ1 + ϵ2 + ϵ3 + ϵ4 + ϵ5

= 4 · negl(λ) + negl(κ)

However, it is a standard result in real analysis that the finite sum of negli-
gible functions is still negligible and hence:

(8)ϵtotal = negl′(λ, κ),

where negl′(λ, κ) is negligible function produced as a linear combination of
negl(λ) and negl(κ) ⊓⊔

8 Evaluation

In this section, we evaluate the performance of the core algorithms of our pro-
posed protocol. Our primary testbed for these experiments was an Intel Core i7
laptop with 16GB RAM running an Ubuntu 20.04 operating system. For these
experiments, we utilized the SEAL cryptographic library [25] for basic HE op-
erations, PASTA library [11] to implement the secure symmetric cipher, and
OpenSSL4. PASTA was chosen over more established Symmetric ciphers such
as AES due to its low multiplicative index. All HE operations in this section
were based on the BFV [2] scheme, with a polynomial modulus degree of 16384.
We note that the choice of polynomial modulus degree impacted the efficiency
of the implemented scheme and increased the size of the ciphertexts, however,
this was necessary due to the complex operations involved. Finally, to provide a
comprehensive overview of each algorithm’s performance, each experiment was
conducted 50 times with the average taken.

8.1 Performance of Core Protocols

In this phase of our evaluations, we focused on the performance of the SD.Setup,
SD.Add, and SD.Query protocols.

SD.Setup : When evaluating the SD.Setup protocol, we first measured the time

taken to generate an RSA public and private key pair, which we used for both
Signing/Verification and Encryption/Decryption, and the time taken to generate
the HE keys for the Analyst (i.e., Public, Secret and Evaluation keys). Overall,
it took approximately 34.6 milliseconds to generate the RSA public and private
keypair, and 88.4 milliseconds to generate the HE keys. Finally, we measured
the time taken by a user to constructm1 = ⟨t1,Enc(pkCSP, evk), σA(H(t1∥evk)))⟩,
and the time taken by the CSP to verify m1 and decrypt Enc(pkCSP, evk). Con-
structing m1 took approximately 1.478 millseconds, while verifying and decrypt-
ing m1 took approximately 1.174 milliseconds.

4 https://github.com/openssl/openssl
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SD.Add : For the SD.Add protocol, we evaluated the cost of homomorphically
encrypting the symmetric key (HE.Encpk), cost of symmetrically encrypting the
user’s data (SKE.Enc), and cost of transforming the symmetric ciphertext to a ho-
momorphic ciphertext (HHE.Decomp). Additionally, we measured the time taken
for a user to construct m2 = ⟨t2, c = (ci, . . . , cn), cKiσui

(H(t2∥c∥cKi))⟩, and time
taken for the CSP to verifym2. Each experiment was run using a varying number
of user data items from 1 to 200. It is worth re-iterating that one of the advan-
tages of SD is that irrespective of the number of data being outsourced, HE.Encpk
is executed once. The cost of executing HE.Encpk once was 18 milliseconds. When
outsourcing one dataset, it took 7 milliseconds to execute the SKE.Enc algorithm
and 17.7 seconds to run the HHE.Decomp algorithm. On the other hand, when
then size of the dataset was 200, the SKE.Enc algorithm took approximately 1.22
seconds to execute, while the HHE.Decomp algorithm took 3823.8 seconds to ex-
ecute (Table 1). Constructing m2 took approximately 1.057 millseconds, while
verifying m2 took approximately 0.101 milliseconds.

SD.Query : Meanwhile for the SD.Query protocol, we focused on the cost of ex-

ecuting the HHE.Eval algorithm and the HHE.Dec algorithm. Once again, each
experiment was run using a varying number of user data items from 1 to 200.
Additionally, for the HHE.Eval algorithm, we focused on a simple squaring func-
tion. For a single dataset, it took approximately 91 milliseconds to execute the
HHE.Eval algorithm, and 5 milliseconds to execute the HHE.Dec algorithm. While
for 200 data items, the HHE.Eval algorithm took approximately 16.9 seconds to
execute, with the HHE.Dec algorithm taking approximately 1.07 seconds to ex-
ecute (Table 1). The analyst takes approximately 1.098 milliseconds to contruct
m3 = ⟨t3,Enc(pkCSP, f), σA(H(t3∥f)⟩), while the CSP takes approximately 1.56
milliseconds to verify m3 and decrypt Enc(pkCSP, f). Finally, the CSP takes ap-
proximately 1.118 milliseconds to construct m4 = ⟨t4, cres, σCSP (H(t4∥cres))⟩.

Our results point that it is quite obvious that the HHE.Decomp algorithm is
the most computationally expensive function, which explains why our proposed
protocol puts this on a CSP. We provide a complete overview of SDprotocol
measurements with 200 data items in Table 2.

Dataset Size SKE.Enc HHE.Decomp HHE.Eval HHE.Dec

1 7 ms 17765 ms 91 ms 5 ms

50 0.31 s 990.2 s 4.916 s 0.275 s

100 0.61 s 1920.8 s 8.418 s 0.54 s

150 0.93 s 2832.1 s 12.592 s 0.81 s

200 1.22 s 3823.8 s 16.902 s 1.07 s
Table 1: Algorithm Execution
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Sub-Protocol Messages Analyst Functions User Functions CSP Functions Time (s)

SD.Setup m1

PKE Keygen
HHE.KeyGen

m1 construction
PKE Keygen

PKE Keygen
m1 verification

0.19

SD.Add m2 -
HHE.Enc
SKE.Enc

m2 construction

m2 verification
HHE.Decomp

3825.04

SD.Query m3,m4 m3 construction -
m3 verification

HHE.Eval
m4 construction

16.91

Table 2: Protocol Measurements in the case of 200 data items

8.2 Comparison with plain BFV

To provide concrete evidence of the efficiency of SD, we compare the operations
at the user side of SD and a basic HE scheme. To be more precise, we imple-
mented a basic HE protocol, where a user homomorphically encrypts each data
item to be outsourced to the CSP. This scheme was also based on the BFV
scheme with the same encryption parameters as our implementation of SD. We
compared the total cost of executing the HE.Encpk and SKE.Enc algorithms of
the SD.Add protocol, and the cost of continuously using HE encryption in the
basic scheme implemented.

As with the previous experiments, we vary the number of datasets from 1
to 200. For a single dataset, SD.Add takes approximately 25 milliseconds, while
the basic HE scheme takes approximately 21 milliseconds. We note that for a
single data item, the basic HE scheme is marginally more efficient than SD at
the user side. However, this is easily attributed to the fact for a single data
item, SD requires two operations (a symmetric encryption operation plus an HE
encryption operation) at the user side, while the basic HE scheme requires a
single HE encryption operation. When the number of datasets is increased to
200, the SD.Add algorithm executes in approximately 1.22 seconds, while the
basic HE scheme executes in about 3.1 seconds. Figure 3 provides an overview
of all the results obtained from this phase of our experiments. From these results,
it is evident that SD considerably reduces the computational costs of the user
and transfers majority of the computational costs to the CSP.

Science & Reproducible Research: To support open science and repro-
ducible research, and provide other researchers with the opportunity to use,
test, and hopefully extend our scheme, we have anonymized our source code and
made it publicly available online5.

5 https://anonymous.4open.science/r/HHE-Protocol-D04E
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Fig. 3: Computation Time on the user’s side

9 Conclusion

In this paper we presented SD; a secure cryptographic protocol based on Hybrid
Homomorphic Encryption. The security and applicability of our construction
have been demonstrated through a detailed security analysis and an extensive
experimental evaluation. It is our firm belief that in the years to come, cloud
storage services will rely less on traditional cryptographic primitives and more
on modern cryptographic techniques allowing flexible computations over the
encrypted data – such as HE. To this end, we believe it is vital to start designing
realistic architectures based on HE in an attempt to demonstrate the feasibility
and applicability of modern cryptography. We hope that our work will incentivize
other researchers to look into the same direction. Most importantly, though, we
hope it will help companies to create modern privacy-respecting cloud services.
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