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Introduction 

  

Asymmetric dimethylarginine (ADMA) is an endogenously occurring methylarginine 

that inhibits nitric oxide synthesis. Plasma levels of methylarginines increase in renal 

failure and certain cardiovascular pathologies, and in patients with end stage renal 

failure the level of ADMA predicts the risk of cardiovascular events and overall 

mortality. The object of this review is to describe the mechanisms of ADMA 

synthesis, metabolism and uptake and to outline techniques for measuring ADMA and 

the pathological states in which ADMA levels are altered. 

 

NO inhibition 

 

Nitric oxide (NO) is a signalling molecule which plays an important role in 

maintaining vascular tone, preventing platelet aggregation [1] and regulating blood 

pressure [2]. Nitric oxide synthases (NOS) produce NO and citrulline from arginine in 

a five-electron oxidation of the guanidine nitrogen of oxygen requiring NADPH and 

tetrahydrobiopterin as cofactors (Figure 1A). Some of the earliest inhibitors of NOS 

were targeted to the arginine binding site and included in this class of guanidine-

substituted arginine analogues was L-NGmonomethylarginine (L-NMMA- Figure 1B; 

Fig 2 [A]) [3,4]. The inhibition constants for L-NMMA have been measured in iNOS, 

nNOS and eNOS to be 6.2µM, 0.18 and 0.94 respectively [5,6,7,8] and the Km for 

arginine ranges from 7-19 µM. There has been speculation about the mechanism of 

NOS inhibition by methylarginines and, at low concentrations of arginine, ADMA 

might bind to elicit uncoupled oxidation of NOS and generate superoxide [9,10]. 
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Several years before the identification of nitric oxide as endothelium dependent 

relaxing factor [11], molecules similar to L-NMMA namely NGNGdimethylarginine 

(ADMA- Fig 1B) and NGNG’dimethylarginine (SDMA- Fig 1B) had been detected in 

urine [12]. In 1992 Vallance et al proposed that the naturally occurring L-NMMA and 

ADMA might regulate nitric oxide production [12, 13]. It was subsequently shown 

that both L-NMMA and ADMA inhibited endothelium dependent contractions of 

aortic rings and altered vascular tone in humans in vivo [12, 13]. ADMA was found to 

inhibit NOS isoforms at equivalent doses as L-NMMA but SDMA did not inhibit 

NOS activity [15]. 
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ADMA synthesis 

  

One of the first proteins observed to have methylated arginine residues was myelin 

basic protein [16]. This process of basic amino acid methylation became well 

documented [17] and it was recognised that arginine methylation occurred shortly 

after protein synthesis. Incorporation of radiolabelled methyl groups onto the arginine 

residues of myelin basic protein revealed that once methylated the reaction appeared 

to be irreversible and the arginine-methylated protein took weeks to degrade [18, 19]. 

Originally methylation was divided into histone and non- histone arginine protein 

methylation. More recent studies have suggested that up to 200 proteins may be 

methylated including proteins involved in translation, transcription, membrane 

transporters, and cell cycle regulation [20].  

Arginine residues on proteins are methylated in vivo by the action of protein arginine 

methyltransferases (PRMT); S-adenosylmethionine (SAM) donates the methyl group 

for the reaction and S-adenosylhomocysteine (SAH) is a reaction by-product. Both 

SAH and SAM affect the rate of arginine methylation, SAM promotes the reaction 

whilst SAH appears to be a weak inhibitor of PRMT activity [21]. 

 

Arginine residues can be asymmetrically methylated by Type 1 PRMTs or 

symmetrically methylated by Type 2 PRMTs; monomethylation of arginine residues 

appears to be an intermediate step in either the Type 1 or Type 2 PRMT reactions. 

Free methylarginines are released as proteins undergo proteolysis (Figure 2 [B]). Type 

1 PRMTs are found in the heart, smooth muscle cells & endothelial cells, at the time 

of writing four Type 1 PRMT isoforms have been identified: PRMT1, PRMT3; 

PRMT4 (CARM1) and PRMT6 (Table 1). PRMT1 is found in brain, liver & testis 
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[22]. PRMT3 is found in adrenal, heart, small intestine, lung, kidney, ovary, testis, 

thyroid, brainstem, cerebellum, cortex, hippocampus and pituitary, with PRMT1 

having a similar pattern of expression but is found at higher levels in lung [23]. 

PRMT3, in contrast to PRMT1, exists as a monomer and is found throughout the 

cytoplasm [23]. The peptide sequences recognised by the Type 1 PRMTs are thought 

to contain arginine flanked by glycine residues [24]. 

PRMT5 is the only known Type2 PRMT and it appears to be localised to the cytosol, 

symmetrically methylated arginine residues have been found in the nucleoplasm of 

HeLa cells [25]. PRMT5, like PRMT3, is sensitive to agents that modify cysteine 

sulphydryl groups [26]. Several single nucleotide polymorphisms (SNP) have been 

identified for the PRMT isoforms and published in the SNP database (Table 1) with 

PRMT3 having significantly more SNP than other isoforms. 

 

The information available about the regulation of PRMT expression and regulation is 

incomplete. Both oxidised and normal low-density lipoprotein (LDL) increase the 

expression of PRMT1, PRMT2 and PRMT3 [27]. Increased activity of PRMT1 has 

been demonstrated following moderate levels of shear stress, which can be attenuated 

by IκB kinase A or the PPARγ activator, troglitazone [28]. The action of shear stress 

upon PRMT1 is attributed to the action of NFγB response element, and following 

shear stress increased levels of methylarginines have been measured [28]. Similar 

levels of shear stress have been shown to activate eNOS through AKT-

phosphorylation [29, 30]. 
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PRMT 

type 

Class Arginine 

methylation 

Localisation Chromosome SNP Reference 

Type 1 PRMT1 

PRMT3 

CARM1/PRMT4 

PRMT6 

MMA, ADMA 

MMA, ADMA 

MMA, ADMA 

MMA, ADMA 

Nucleus 

Cytosol 

Nucleus 

Nucleus 

19q13 

11p15.1 

12p13.32 

1p13.3 

22 

240 

48 

16 

[22; 31] 

[23; 26] 

[32] 

[26] 

 PRMT2 No apparent 

Arginine 

methylation 

Nucleus 21q22.3 87 [33] 

Type 2 PRMT5 MMA, SDMA Cytoplasm 14q11.2 22 [25, 26, 34] 

   

 Table 1: Summary of Type 1 and Type 2 PRMT isoforms, chromosomal localisation as published by 

the Welcome Trust Sanger Centre: http://www.ensembl.org/Homo_sapiens/ and single nucleotide 

polymorphism (SNP) data from http://www.ncbi.nlm.nih.gov/SNP/. 

 

 

 

ADMA metabolism  

 

A route for ADMA metabolism was proposed following observations in in vivo 

studies that excretion of radiolabelled ADMA and L-NMMA levels were lower than 

those measured in urine for SDMA [35]. An enzyme was identified from rat kidney 

lysate which could metabolise ADMA to citrulline and dimethylamine respectively 

[36]. This enzyme was subsequently purified from rat tissue and became known as 

NG,NG-dimethylarginine dimethylaminohydrolase - DDAH (Figure 2-[C]; [37]); it 

was found later in human tissue [38]. DDAH also metabolises L-NMMA to citrulline 

and methylamine but it has no activity towards SDMA [15]. The activity of DDAH 
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alters the concentration of methylarginines within cells and the levels of NO produced 

by the cells (Figure 2-[A]; [39].  

  

A second DDAH isoform (DDAHII) was identified with 62% homology to DDAHI 

[40]. DDAHII is expressed in highly vascularised tissues and in immune tissues 

whereas the distributions of DDAH1 correlates with those described for nNOS [41]. 

Interestingly DDAHII levels are highly expressed in foetal tissues. Both DDAHI and 

II were found to have a cytosolic localisation suggesting that they maintain low 

ADMA levels throughout the cell [42, 43]. The DDAH1 gene maps to chromosome 

1p22 and DDAHII maps to the MHC III region of chromosome 6p21.3 [41]. 

 

Whilst DDAH plays in important role in metabolising endogenously occurring NOS 

inhibitors, high levels of NO appear to feedback to influence the activity of DDAH. 

Leiper et al demonstrated that DDAH could be nitrosylated [43]. The crystal structure 

showed that the DDAH active site contained a catalytic triad Cys-His-Glu [44] and 

mutation of this active site Cys249 abolished nitrosylation.  Furthermore NO released 

from cytokine stimulated endothelial cells elicited DDAH nitrosylation and reduced 

DDAH activity, indicating that following iNOS induction DDAH activity may be 

reduced leading to an accumulation of methylarginines [43]. It has been suggested 

that zinc might regulate DDAHI activity through interactions with active site cysteine 

residues [45], although no zinc was identified from the crystal structure of DDAH.  

 

Based upon measurements of urinary dimethylamine as an indicator of ADMA 

metabolism, it seems that a healthy adult generates about 300 µM of ADMA per day 

of which 250 µM is metabolised by DDAH [46]. 



 8 

Manipulation of DDAH expression 

 

Treatment of endothelial cells with all-trans-Retinoic acid (atRA) decreases levels of 

secreted ADMA and increases the levels of NOx generated by the cells [47]. DDAHII 

expression is upregulated by all-trans-Retinoic acid, possibly acting through a 

PPAR/RXR site in the DDAHII promoter.  

 

Estrogen also appears to reduce ADMA levels and increase DDAH activity, this 

attenuation in ADMA increased NO levels [48]. In contrast the anti-cancer drug 

tamoxifen increased ADMA levels and reduced levels of NO [48]. Following estrogen 

replacement, in post-menopausal women, levels of plasma ADMA were reported to 

fall, consistent with the observations of estrogen on DDAH activity [49]. 

 

There may also be other factors which regulate DDAH: Interleukin 1β has been 

reported to increase both DDAH and iNOS expression in rat smooth muscle cells with 

a corresponding fall in ADMA levels [50]. ADMA levels were observed to rise in the 

presence of either oxidised LDL or tumour necrosis factor-α, which was accompanied 

by a fall in DDAH activity [51]. DDAHI expression was increased in an in vivo model 

correlating with area of low blood flow in the heart [52], shear stress has been 

demonstrated to effect PRMT activity [28]. 

 

Genetic variants of DDAH 

 

Polymorphisms have now been identified for DDAHII, one of which involves a 

6G/7G variation at -871 of the DDAHII promoter occurring in approximately 1% of 
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the population, this polymorphism tested in promoter reporter assays indicated that it 

might lead to increased basal DDAHII activity [53]. A mutation in human DDAHI 

has also been published [54]. 

At the time of writing there were 13 published single nucleotide polymorphisms 

(SNP) on the NCBI SNP database (http://www.ncbi.nlm.nih.gov/SNP/) for DDAHII 

and 338 reports of SNP for DDAH1. It remains to be seen whether these 

polymorphisms correlate with raised ADMA levels in cardiovascular disorders or can 

be used to predict cardiovascular morbidity. 

 

DDAH regulation of angiogenesis 

 

ADMA has been shown to affect angiogenic processes in an in vivo model [55] and 

atRA, which has been shown to increase DDAH activity [47] has been implicated in 

the regulation of angiogenesis as well as modulating endothelial cell growth and 

differentiation. In DDAHII overexpressing endothelial cells, levels of VEGF were 

increased and there was increased tube formation in an in vitro model [56]. Levels of 

DDAHII are abundant in the placenta, a highly vascularised tissue [40]. DDAH 

overexpression in tumour cells has also been shown to increase VEGF expression and 

leads to increased neovascularisation [57]. 

 

Effects of systemic ADMA 

 

There are numerous reports documenting changes in ADMA levels correlating with 

various cardiovascular disorders. In a randomised double-blinded trial administration 

of ADMA to healthy subjects decreased heart rate, increased cardiac output and 
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caused a rise in blood pressure [46]. Another interesting finding from this study was 

the effect that systemic ADMA had on the vasculature in response to exercise; cardiac 

output doubled in response to exercise, but after ADMA there was a significantly 

depressed cardiac response to exercise.  

 

Arginine Transport 

 

The arginine paradox 

Arginine is transported through the cationic amino acid transporters (CAT) of system 

y+, which are sodium independent. In endothelial cells up to 2mM arginine has been 

measured [58] which is significantly higher that the Km for NOS of 7-19 µM [5, 6, 7, 

8], therefore arginine should never be rate limiting for NOS and the NOS enzymes 

should be saturated by substrate arginine. However, in numerous in vitro and in vivo 

studies endothelial NO production has been augmented by arginine supplementation 

(recent review [59]). This has led to unexplained “arginine paradox” where despite 

high intracellular arginine concentrations, arginine can be rate limiting for NOS.  

 

Effects of methylarginines on arginine transport 

 

The methylarginines ADMA, L-NMMA and SDMA have all been shown to compete 

with arginine for the y+ transporter (Figure 2 [D]) and this has been demonstrated in 

macrophages, microvascular and endothelial cells [60; 61; 62]. Some investigators 

have questioned whether the concentrations of ADMA measured in plasma and other 

biological samples for ADMA (typically 0.5 – 1 µM) could inhibit NOS given the 

physiological levels of arginine. The Km of DDAH for ADMA is high (100 uM) and 
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this might suggest that under certain conditions localised ADMA can reach high 

concentrations indeed L-NMMA appears to accumulate greater than 5-fold inside the 

cells [63]. 

Inhibition of DDAH with S-2-amino-4(3-methylguanidino)butanoic acid (4124W) 

leads to a significant accumulation of ADMA [39] culminating in impaired NO 

production [47]. In neurons Zweier & Cardounel reported that intracellular levels of 

ADMA were at levels sufficiently high that more than 50 % of nNOS could be 

expected to be inhibited at any given time [64]. Therefore there is evidence to suggest 

that intracellular levels of ADMA exceed circulating levels and that ADMA may be 

concentrated within cells at levels which can affect NOS. ADMA may also have a 

paracrine action and ADMA secreted from endothelial cells has been demonstrated to 

inhibit the NO production of cytokine stimulated macrophages [65].  

 

Other factors which influence arginine uptake 

 

Arginine uptake is affected the inflammatory stimuli: tumor necrosis factor-alpha 

(TNF-α), interleukin-1 beta (IL-1β), and lipopolysaccharide (LPS). LPS has been 

shown to increase the uptake of L-NMMA by greater than 80% [63; 67] and LPS has 

been shown to increase the expression of CAT mRNA [66]. Arginine transport may 

be influenced by changes in the membrane potential of potassium inward rectifying 

K+ channels.   

The NO signalling pathway appears to directly influence arginine uptake: NO may 

attenuate the uptake of arginine by cells [68], and in response to arginine starvation 

there is an increase in the expression of the cationic amino acid transporter [69]. The 

transport of arginine is altered under pathophysiological conditions. Hypoxia, which 
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is associated with increases in proteolysis, appears to reduce the transport of  arginine 

[70]. During hyperglycaemia there is an increase in the activation of cationic amino 

acid transport which may impact upon diabetes.  

 

 

Methods of detecting ADMA 

  

The original measurements of ADMA were performed using HPLC (Paik 1970; 

Vallance et al 1992) and after 30 years HPLC analysis is the predominant method 

used to determine ADMA levels. In recent years ADMA samples have derivatised by 

ortho-phthaldialdehyde reagent (OPA) and detected by fluorometry which has greatly 

increased the sensitivity of the method (Teerlink et al 2002). Refinements in the 

HPLC techniques and the sample extraction have reduced the amount of starting 

sample, for plasma less than 0.1 ml is required to determine levels of ADMA. 

Limitations of this method for detecting ADMA are the number of samples which can 

be injected and the time required to extract samples prior to HPLC analysis. 

Comparisons of the ratios of ADMA: SDMA and ADMA: arginine have been 

frequently used to describe changes in ADMA in disease states. Typically the levels 

of ADMA in plasma from healthy adults have been described 0.3-1µM (MacAllister 

et al 1996b; Teerlink et al 2002; Zoccali et al 2001) and levels of ADMA in cerebral 

spinal fluid 0.01-0.07 µM (Abe et al 2001; Mulder et al 2002). Interestingly the ratio 

of ADMA to SDMA in CSF is 1:3 whereas in plasma from normal patients there are 

equal levels of ADMA: SDMA (Mulder et al 2002). 
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Several methods have now been described to measure ADMA using mass 

spectrometry coupled to a separation system (Vishwanathan et al 2000; Tsikas et al 

2003,; Martens-Lobenhoffer & Bode-Boger 2003). These methods appear to have 

lowered the limits of detection and may have advantages over HPLC with higher 

sample throughput. Antibodies raised against ADMA are commercially available but 

there are no published reports of groups having successfully used these at the time of 

writing.   

  

Method Basal plasma Limits of 

detection 

Reference 

HPLC  0.42 ± 0.06 µM  0.01µM  Teerlink et al 

2002  

 

HPLC–MS 

 

0.453±0.128µM  0.2 µM Martens-Lobenhoffer 

et al 2003 

Gas 

chromatography 

coupled to MS 

0.39 ± 0.6µMol 10 amol  Tsikas et al 2003 

 Liquid 

chromatography 

coupled to MS-MS 

 25.1+/-9.4 ng/ml  1 ng/ml  Vishwanathan et 

al 2000 

       

 

 

DDAH activity measurement 



 14 

DDAH activity has been measured by the conversion of radiolabelled methylarginine 

to radiolabelled citrulline (MacAllister et al 1996). A colorimetric assay is also in use 

to measure the end point of the DDAH reaction (Knipp et al 2000), citrulline, but is 

limiting for use with coloured assay materials such as particularly tissue. 

Dimethylamine is also measured as an indicator of DDAH activity (Achan et al 

2003). 

 

 

 

ADMA in cardiovascular disorders  

  

It has been recorded over the past 30 years that urinary methylarginines increase in 

various disease states including muscular dystrophy (Lou 1979) and liver disease 

including chronic active hepatitis (Carnegie et al 1977). Changes in ADMA in renal 

failure patients were later associated with impaired NO production (Vallance et al 

1992)  

 

In healthy individuals there appears to be a correlation between levels of ADMA and 

subsequent acute coronary events and the levels of ADMA appear to predict both the 

occurrence of cardiovascular events and mortality (Valkonen et al 2001). In some 

reports ADMA levels are increased in hypertension and high levels of salt in the diet 

might also increase ADMA (Osanai et al 2002). ADMA may contribute to left 

ventricular hypertrophy (Zoccali et al 2002) and reduce renal excretion of sodium 

perhaps contributing to hypertension (Matsuoka et al 1997).  
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Chronic renal failure 

The risk of cardiovascular mortality is increased by 20-fold in association with 

chronic renal failure. In 1992 Vallance et al reported that levels of plasma ADMA 

were several fold higher in renal failure patients than in healthy controls (Vallance et 

al 1992) and that levels of ADMA in these patients were high enough to attenuate the 

production of nitric oxide. In addition to being excreted by the kidneys ADMA is also 

metabolised; DDAH is expressed throughout the kidney and co-localises with NOS 

expression. Changes in ADMA levels are partially associated with impaired renal 

clearance, but in renal failure SDMA and creatinine levels rise concurrently whereas 

there is a smaller increase in ADMA indicating that some ADMA is metabolised by 

DDAH. In a cohort of patients with renal failure, haemodialysis to remove 

methylarginines was found to have an immediate short-term improvement on 

vasodilatation (Cross et al 2001).  

 

In in vivo experiments NOS inhibition, by ADMA or L-NMMA, may be reversed by 

arginine, however the effects of arginine supplementation upon renal failure has been 

tested but conflicting reports have been published regarding the effects (Hand et al 

1998 & Cross et al 2001). 

 

Pulmonary hypertension: 

Pulmonary hypertension is characterised by an increase in pulmonary blood pressure 

accompanied by a fall in NO levels. At birth and for the subsequent 24 hours there is 

increased DDAH activity in lungs correlating with increased NO generation (Arrigoni 

et al 2002). However in a porcine model of persistent pulmonary hypertension, which 

affects the newborn, the hypoxic conditions required to mimic this condition lead to a 
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fall in DDAHII expression and activity (Arrigoni et al 2002). Levels of ADMA have 

been measured in adults with pulmonary hypertension and were found to be 

significantly higher than in control subjects (Gorenflo & Zheng 2001). In another 

animal model of pulmonary hypertension, rats were found to have reduced DDAH 

activity and raised ADMA levels, the pulmonary blood pressure was increased with a 

fall in NO levels despite increased expression of eNOS (Millatt et al 2003). 

 

ADMA as a marker for pre-eclampsia: 

Pre-eclampsia is a disorder of maternal vasculature and effects 3-5 % of pregnancies. 

During the course of normal pregnancy plasma ADMA falls from 0.82 uM to 0.52 uM 

at 24 weeks gestation before gradually rising to the pre-pregnancy levels at term. 

(Fickling et al 1993; Holden et al 1998). This change in circulating ADMA parallels a 

fall in blood pressure and maternal vascular tone to 24 weeks of pregnancy, which 

then increases throughout the rest of the pregnancy. Women who were found to 

develop pre-eclampsia were reported to have ADMA levels greater than 1.45 uM 

(Savvidou et al 2003), subjects who had higher levels of ADMA early in pregnancy 

were most likely to develop pre-eclampsia. Throughout pregnancy high levels of 

protein turnover occur in the uterus, which would be expected to increase the levels of 

methylarginines. In the placenta DDAHII is highly expressed (Leiper et al 1999) 

presumably to metabolise these increased concentrations of ADMA. It has been 

suggested that the raised levels of ADMA associated with pre-eclampsia might reflect 

dysregulation of DDAHII. 

 

Hyperhomocysteinemia 
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Levels of S-adenosylhomocysteine (SAH), the end-product in the PRMT methylation 

of arginine residues, are associated with the risk of cardiovascular events. Circulating 

concentrations of ADMA are increased in animals fed on homocysteine rich diet 

(Boger et al 2000) and in humans following methionine loading (Boger et al 2001). 

ADMA levels seem to correlate with increased homocysteine levels and impaired 

arterial relaxation. In patients with hyperhomocysteinmia there may be increased 

oxidation of low density lipoproteins (LDL). In an in vitro model, levels of oxLDL 

appear to increase PRMT activity and downregulate the activity of DDAH, which is 

consistent with the increased ADMA observed in hyperhomocysteinemia. 

Homocysteine has also been proposed to oxidise the cysteine residue of DDAH at the 

active site to reduce DDAH activity (Stuhlinger et al  2003). 

 

 

Atherosclerotic disease 

The development of atheroma can be assessed by measuring the lumen diameter of a 

vessel, in a cohort of patients with end stage renal failure undergoing hemodialysis, 

ADMA levels were been reported to correlate with intima-media thickness (Zoccali et 

al 2002). In another study of healthy individuals measuring the intimal-medial 

thickness of the carotid artery, ADMA and age were found to be independent 

predictors of lumen occlusion (Miyazaki et al 1999). The risk of developing atheroma 

is significantly increased in patients with end-stage renal disease, 

hyperhomocysteinemia and type II diabetes conditions which also have elevated 

levels of plasma ADMA (Zoccali et al 2002; Stuhlinger et al 2001; Paiva et al 2003). 

Investigators have proposed that ADMA levels may predict the onset of 

atherosclerotic disease although the number and size of studies remain small. 
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Nitric oxide is important in preventing monocyte adhesion, platelet aggregation and 

vascular smooth muscle cell proliferation. The reduced bioavailability of NO is 

thought to contribute to endothelial dysfunction and the early stages of atheroma 

development. It is not known whether the activities of DDAH or PRMT are effected 

during the progression of atherosclerosis although oxLDL, a marker for the 

progression of atheroma, has been demonstrated to increase PRMT activity and 

reduce DDAH activity (Ito et al 1999; Boger et al 2000).  

 

 

ADMA in Type II diabetes 

The plasma concentration of ADMA appears to have a positive correlation with 

insulin resistance (Stuhlinger et al 2002) and is increased in individuals with Type II 

diabetes. Metformin (Asagami et al 2002) and rosiglitazone (Stuhlinger et al 2002) 

have both been demonstrated to reduce the levels of ADMA associated with Type II 

diabetes and it remains to be seen whether these drugs have an effect through 

modulating either DDAH or PRMT activities. It has been reported that glucose may 

downregulate DDAH activity in an in vivo model correlating with a rise in ADMA 

levels and impaired NO production (Lin et al 2002). However the mechanism by 

which glucose is effects the activity of DDAH remains undetermined. 

 

 

ADMA in Alzheimer’s 

There is conflicting evidence surrounding the involvement of DDAH and ADMA 

levels in Alzheimer’s disease. DDAH may be upregulated in the cytoplasm of neurons 

with cytoskeletal pathology (Nakagomi et al 1999) and ADMA was reported to be 
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lower in Alzheimer’s patients compared to control subjects (Abe et al 2001). 

However, further measurements of ADMA levels in CSF have indicated that there are 

no changes between normal and moderately effected patients (Mulder et al 2002).  

 

 

Summary 

 

ADMA levels are altered in a wide series of pathophysiological states and the 

importance of measuring the circulating levels of ADMA has been demonstrated in 

predicting cardiovascular events. Techniques for measuring ADMA have improved 

over the past 30 years but it would be of great advantage to the field if multiple 

samples could be screened in parallel. We have mentioned the polymorphisms which 

have been identified in DDAH and PRMT isoforms, in the future genotyping might 

provide additional information to assist in diagnosing cardiovascular events.
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Figure 1A] – Nitric oxide synthase reaction 1B] – structures of endogenous 
methylarginines 
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Figure 2 -  
A] ADMA & L-NMMA inhibit nitric oxide synthases.  
B] Arginine residues on proteins are methylated by PRMT with S-
adenosylmethionine acting as a methyl donor, the arginine residues can be either 
mono- or di-methylated. Free L-NMMA, ADMA and SDMA are released as the 
protein undergoes proteolysis  
C] DDAH metabolises ADMA & L-NMMA to citrulline and dimethylamine or 
methylamine respectively. 
D] ADMA, L-NMMA and SDMA may compete with the cationic amino acid y+ 
transporter to reduce arginine transport.  
 
 

 
 
List of abbreviations: 
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monomethylarginine), SAH (S-adenosylhomocysteine), SAM (S-adenosylmethionine), PRMT (protein 
arginine methyltransferase); DDAH (dimethylarginine dimethylaminohydrolase); NO (nitric oxide); 
NOS (nitric oxide synthase). 
  


